Heath Dairy Road Stream Restoration Site Randolph County, North Carolina

DMS Project #170 USACE Action Item # SAW 2008 02860

MY – 02 Fall Monitoring Report

Data Collected: September 2015 Final Report Submitted: January 2016

Prepared for: North Carolina Department of Environmental Quality Division of Mitigation Services 217 West Jones St. Suite 3000A Raleigh, NC 27603

Heath Dairy Road Stream Restoration Site Randolph County, North Carolina

DMS Project #170 USACE Action Item # SAW 2008 02860

MY – 02 Fall Monitoring Report

Data Collected: September 2015 Submitted: January 2016

Prepared for: North Carolina Department of Environmental Quality Division of Mitigation Services 217 West Jones St. Suite 3000A

Raleigh, NC 27603

Prepared by: Mogensen Mitigation, Inc. P.O. Box 690429 Charlotte, NC, 28227

TABLE OF CONTENTS

1.0	Project Summary.	. 2
2.0	Methodology	. 8
3.0	References	.9

APPENDICES

Appendix A. Project Vicinity Map & Background	
Figure 1. Vicinity Map	11
Table 1. Project Components & Mitigation Credits	12
Table 2. Project Activity & Reporting History	13
Table 3. Project Contacts	14
Table 4. Project Attributes	15
Appendix B. Visual Assessment Data	
Figure 2.0-2.4 Current Conditions Plan View	17
Table 5. Visual Stream Assessment.	28
Table 6. Vegetation Condition Assessment	32
Stream Cross Section Station Photos	33
Vegetation Plot Photos	43
Photo Point Photos	48
Appendix C. Vegetation Plot Data	
Table 7. Vegetation Warranty Plot Summary	50
Table 8. Vegetation Plot Success Criteria Attainment	51
Table 9. Vegetation Plot Summary	52
Appendix D. Stream Survey Data	
Figure 3.0-3.28 Cross Section Data	58
Figure 4.0-4.4 Longitudinal Profile Data	.86
Figure 5.0-5.20. Pebble Count Data	90
Table 10.0 Baseline Stream Data Summary	110
Table 11.1-11.3 Monitoring- Cross Section Morphology	112
Table 12.1-12.3 Monitoring- Stream Reach Morphology	115
Appendix E. Hydrologic Data	
Table 13 Verification of Bankfull Events	118
Figure 6.0 Rainfall Percentiles	119
Figures 7.0-7.4 Groundwater Gauge Data	120
Table 14. Wetland Gauge Attainment.	124

1.0 Project Summary

1.1. Goals & Objectives

The Heath Dairy Road Stream Restoration Site (Heath Dairy Site, DMS # 170) lies along Back Creek and unnamed tributaries in Randolph County NC. The site lies within the Yadkin-Pee Dee watershed (HUC #03040103-050050). This project includes restoration, enhancement and preservation of approximately 7,708 linear feet of degraded channels, and wetland enhancement and preservation including soil restoration (scarification of compacted soil) and planting of wetland vegetation. The project was initiated by NCDOT in 2004 at which time they secured an option on the Ridge parcel. The project was transferred to DMS in 2005. Following field studies, the Restoration Plan was finalized in 2009 and Design Plans were complete in 2011. Construction on the project was initiated in June 2012 and channel construction was completed in March 2013. Planting of the riparian buffer was completed in March 2014 and Monitoring for MY1 was conducted by AECOM in the fall of 2014. In June 2015, the monitoring contract was awarded to Mogensen Mitigation, Inc. (MMI). Fall monitoring for MY2 was completed by MMI in October 2015.

Specific **goals** for the Heath Dairy project include:

- Improve local water quality within the restored channel reaches as well as the downstream watercourses through:
 - Reduction of current channel and off-site sediment loads by restoring appropriately sized channels with stable beds and banks.
 - Reduction of nutrient loads from adjacent agricultural fields by restoring the riparian buffer.
 - Reduction of water temperatures provided through shading of the channel by canopy species along with the resultant increase in oxygen content.
- Improve local aquatic and terrestrial habitat and diversity within the restored channels and their vicinity through:
 - Restoration of appropriate bed form to provide habitat for fish, amphibian, and benthic species.
 - Enhancement of riparian wetlands along the stream corridor to provide additional landscape and habitat diversity.
 - Restoration of a suitable riparian buffer corridor in order to provide both vertical and horizontal structure and connectivity with adjacent upland areas.
 - Restoration of understory and canopy species in order to provide forage, cover, and nesting for a variety of mammals, reptiles, and avian species.

To meet these goals, the following **objectives** have been established for the Heath Dairy project:

- Restore natural stable channel morphology and proper sediment transport capacity;
- Create and/or improve bed form diversity and improve aquatic and benthic macroinvertabrate habitat;
- Construct a floodplain (or local bankfull bench) that is accessible at the proposed bankfull channel elevation;

- Improve channel and stream bank stabilization by integrating in-stream structures and native bank vegetation;
- Restore 7,781 linear feet of stream through Priority I and II restoration from the existing 6,748 linear feet of stream;
- Enhance 960 linear feet of stream from the existing 960 linear feet of stream;
- Preserve 636 linear feet of stream;
- Enhance 0.6 acres of wetlands from the existing 0.6 acres of wetlands (all are riparian non-riverine wetlands);
- Preserve 1.18 acres of wetlands (all are riparian non-riverine wetlands, except Wetland J which is a riparian riverine wetland consisting of 0.090 acres of preservation); and,
- Restore approximately 30 acres of riparian buffer by establishing a native forested and herbaceous riparian buffer plant community.

1.2 Project Success Criteria

1.2.1 Streams

Post-restoration monitoring of channel stability will include dimension (cross-sections), pattern and profile (longitudinal profile), and photo documentation of the project. Success criteria for the stream restoration also include substrate analysis (Wolmann Pebble Counts) and the frequency of bankfull events (HOBO Readers). The success criteria are described below for each parameter.

• Dimension

Due to the size and watershed dynamics, riffle cross-sections on the restoration reaches should remain relatively stable; however, due to the sand/silt nature of the substrate throughout the project reaches, fluctuations of the riffle bed elevation over time are expected. These fluctuations should be temporary and will likely correspond to storm events. Riffle cross-sectional ratios (width-to-depth, depth ratio, and bank height ratio) should fall within the parameters defined for channels of the appropriate Natural Channel Design stream type. If persistent changes are observed, these changes will be evaluated to assess whether the stream channel is showing signs of long term instability. Indicators of instability include, but are not limited to, a vertically incising thalweg or eroding channel banks. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-to-depth ratio in meandering channels or an increase in pool depth. Remedial action should not be taken if channel changes indicate a movement toward stability.

• Pattern and Profile

Longitudinal profile data for the stream restoration reaches should show that the bedform features are remaining stable. The riffles should be steeper and shallower than the pools, while the pools should be deep with flat water surface slopes. The relative percentage of riffles and pools should not change significantly from the design parameters. Adjustments in length and slope of run and glide features are expected and will not be considered a sign of instability. The longitudinal profile should show that the bank height ratio remains very near to 1.0 for the majority of the restoration reaches.

• Photo Documentation

Photographs illustrate the site's vegetation and morphological stability on an annual basis. Cross-section photos should demonstrate no excessive erosion or degradation of the banks. Longitudinal photos should indicate the absence of persistent bars within the channel or vertical incision. Grade control structures should remain stable. Deposition of sediment on the bank side of vane arms is preferable. Maintenance of scour pools on the channel side of vane arms is expected. Reference photos will also be taken for each of the vegetation plots.

• Substrate

Substrate materials in the restoration reaches should indicate a progression towards or the presence of coarser materials in the riffle features and smaller particles in the pool features.

• Bankfull Events

Two bankfull flow events in separate years must be documented on the project within the five- year monitoring period. Bankfull events will be documented using a crest gage, photographs, and visual assessments such as debris lines.

1.2.2 Vegetation

Success will be determined by survival of target species within the sample plots. A minimum of 260 stems/acre must survive for at least five years after initial planting. If the vegetative success criteria are not met, the cause of failure will be determined and an appropriate corrective action will be taken. The criteria for vegetative success will be as follows:

- A minimum survival rate of 320 trees per acre in the riparian buffer at the end of 3 years.
- A minimum survival rate of 260 trees per acre in the conservation easement at the end of 5 years.

These values include both planted and native volunteer species.

1.2.3 Hydrologic Success

There is no specified hydric criteria for the project wetlands at this time. For the purposes of the MY2 reporting, we considered wetland hydrology to meet successes criteria when saturated soil conditions occurred within 12 inches of the ground's surface for a minimum of 12.5% of the growing season during average climatic conditions.

1.3. Project Setting & Pre-Restoration Conditions

The Heath Dairy Site is located in Randolph County, North Carolina, northwest of Asheboro and southwest of the Town of Randleman (Figure 1).

The site is located in the Back Creek watershed of the Yadkin-Pee Dee River Basin, United States Geological Survey (USGS) Hydrologic Unit Code 03040103050050, within the North Carolina Division of Water Resources (NCDWR) sub-basin 03-07-09. Back Creek drains into the Back Creek (Lucas) Lake and then into the Uwharrie River approximately eleven miles downstream of the site. This HUC is identified as a Targeted Local Watershed (TLW) in EEP's 2003 and 2009 Yadkin River Basin Restoration Priority (RBRP) Plan. Prior to restoration, the site was utilized for agricultural purposes, including grazing pasture. The surrounding land uses consist of pastureland, woodland, and residential lots.

1.4. Project Components and Mitigation Assets

The mitigation components are summarized in Table 1 of Appendix A.

1.5. Project Design Approach

The Heath Dairy Site restored and/or enhanced approximately 7,708 linear feet of degraded channels. Table 1 and Figure 2 in the Appendix present the project assets.

With the exception of the lower portion of Back Creek, the channel was designed as a Type B4c stream. This channel configuration provided the most stable form in moderately sloping colluvial valleys. Not only does it effectively convey bankfull discharge and sediment load but also conforms to the natural conveyance of flood flows. Along the lower reach of Back Creek where the topography opens into a broad flat alluvial floodplain the channel was designed as a Type E4 stream. The proposed channel dimensions, patterns, and profiles were based on hydraulic relationships and morphological dimensionless ratios of reference reaches.

Restoration consisted of Priority I and II activities which involved reconstruction of the channels along new and existing alignments. In-stream structures such as rock cross vanes, J-hook vanes, log vanes, and root wads were incorporated into the stream to provide energy dissipation, bank stabilization, grade control, and habitat diversity. Coir fiber matting was used to provide bank stability until vegetation becomes established. Bed material from the existing channel was mined and used in the riffles of the channels. Bed material was augmented with additional stone where necessary.

The channel alignments were established to provide maximum conformance to the existing valley form. Where stream channels had been previously moved away from the low point in the valley the alignments repositioned the channel to the proper location. Where the valley width narrowed, channel sinuosity was reduced. Where rock outcrops were present at the surface, the channel alignments were kept near their present locations.

At the request of the DMS the upper portion of Back Creek was redesigned as an enhancement reach to facilitate a paired watershed study to be conducted by North Carolina State University (NCSU). Enhancement efforts entailed raising the profile in place to reconnect the stream to the relic floodplain, construction of in-stream structures, and stabilization of the banks.

Nine separate wetland areas totaling 1.78 acres were identified on the Heath Dairy Site. These wetland areas were enhanced by removal of grazing activity and planting of native wetland vegetation. Annual monitoring was taken over in 2015 by Mogensen Mitigation, Inc., and will continue through project close-out.

1.6. Current Conditions and Performance Summary

Based on the data collected during the fall of 2015 (MY2), the Heath Dairy Site is trending toward successful restoration with very few minor concerns at this time. Planted woody vegetation throughout the site is struggling with herbaceous weedy competition such as hairy white old field aster (Symphotrichum pilosum), golden rod (solidago spp.), ragweed (ambrosia spp.) and dog fennel (Eupatorium capillifolium). All vegetation plots (temporary and permanent) are achieving about 30% survival rate. Supplementary planting is scheduled for the week of January 4th, 2016 at which time 37 acres will be planted with approximately 9,250 stems per the vegetation contract warranty clause. There was only one problem area that was sparsely vegetated due to poor soils but is very limited in size and will be watched in future monitoring years. It was too small to mention in the report.

All streams appear stable, but some areas of the smaller tributaries (West Branch and East Branch) were observed to be dry during our monitoring visits in late September. These areas have vegetation growing in the channels which may indicate future channel hydrology problems and will continue to be monitored closely. We note that the project site falls within the Carolina Slate Belt physiographic region which may affect channel flow. Differences in cross-sectional metrics between MY2 and previous years likely reflect noise in the data resulting from inherent differences in field conditions and survey teams, rather than environmental patterns. These data will continue to be monitored for trends in the future. At this time, our visual assessment and stream surveys indicate all project reaches are currently performing within established and acceptable threshold criteria ranges. No cattle or other encroachments were observed.

1.6.1. Stream Assessment

Back Creek and North Branch exhibit minor lengthening of the riffles on average compared to the MY1 observations but are otherwise relatively unchanged. The channel banks are undergoing very minor erosion in certain places, but appear relatively stable along most segments. The channel banks are supported by a healthy growth of willow and silky dogwood in most areas. Despite being a relatively dry year, we observed standing water in pools at regular intervals throughout these reaches. Overall, the stream is trending toward an improved ecological condition and no remedial action is proposed at this time

West Branch is exhibiting minor steepening of the riffles, on average, compared to MY1 observations but is otherwise unchanged. We observed that this reach was mostly dry throughout the upper 70% during our September visits yet was holding water occasionally in deeper pools throughout the reach. Limited satellite coverage due to dense overstory foliage and restricted mobility due to an understory overgrown with native bur cucumber (Sicyos angulatus) made survey work difficult along this reach.

East Branch stream features were relatively unchanged compared to previous years, and was observed to be dry along its entire reach during our September visits. Thick herbaceous vegetation has filled the stream channel entirely, making it difficult to distinguish/find all of the steam features. Spring flood events may clear this overgrowth and better define the ordinary high water mark and other channel features.

Pebble count data indicates continued fining of many of the riffle sections across the project site. Heavy vegetation growth (*Murdannia keisak*) was observed in many of the riffles. In some reaches the Murdannia appears to have trapped and held a large amount of silt covering the coarser material below, which are reflected in the corresponding pebble counts.

1.6.2. Wetlands

Project wetlands will be added upon DMS request to USACE since they were added after the restoration plan. No specific monitoring actions were applied to project wetlands for the MY2 monitoring report.

1.6.3. Vegetation Assessment

This year, each of the 26 permanent vegetation plots were monitored in mid-September 2015 by MMI staff, as described in the methods section below. An additional 25 temporary warranty plots were established and sampled to obtain counts of living native stems. All vegetation plots (both permanent and temporary) are achieving an approximate 30% survival rate, with supplementary planting scheduled for January 2016. Several areas across the site were noted as having consistently low density - well below the MY2 success criteria for planted and volunteer stems combined. These areas are noted as polygons on the current plan view and summarized in Table 6.

Only 7 of the 26 permanent vegetation plots met the MY2 success criteria of 320 stems/acre. Across all plots, results show a show an average of 205 planted live stems surviving per acre across the project site. If native volunteers are also included, the project average increases to 300 total stems per acre. These results show that the average stem density across the project decreased by greater than 80% compared to the previous year's observations. Similarly, only 9 of the 25 warranty plots met success criteria, with an average of 255 living stems per acre across all plots. Although species information was not collected for these warranty plot surveys, informal observations suggest no obvious species dominated but rather the species assemblage varied from plot to plot across the project site. Data collected for all the plots are included in Appendix C.

In general, planted woody vegetation throughout the site is struggling with competition by herbaceous weedy species such as hairy white old field aster (Symphotrichum pilosum), golden rod (solidago spp.), ragweed (ambrosia spp.), and dog fennel (Eupatorium capillifolium). We observed scattered occurrences across the site of several of the invasive species listed in the 2014 monitoring guidelines, including multiflora rose (Rosa multiflora), Japanese honeysuckle (Lonicera japonica) and Chinese privet (Ligustrum sinense), with privet being particularly prominent along East Branch. Although each of these species occurred throughout the site, we did not observe any particularly dense occurrences or prominent patches to warrant special inclusion on the current plan view. These species will be monitored closely in future years and be included as polygons should conditions intensify in specific locations.

1.6.4. Hydrology Assessment

Four (4) RDS groundwater gauges have been installed across the site. Prior to 2015, Gauges 1 through 3 were installed and monitored by DMS while Gauge 4 was installed and monitored by AECOM. In September 2015, MMI downloaded all available data from each of the four gauges, and returned in November to download data again at the end of growing season. According to the Mitigation Plan and the MY1 report, hydrologic performance standards will be met in restored wetland areas when saturated soil conditions occur within 12 inches of the ground's surface for a minimum of 12.5% (29 days) of the growing season (March 24 to Nov 13) during average climatic conditions.

None of the gauges met the minimum wetland hydrology criterion of groundwater within 12 inches of the ground surface for a minimum of 12.5% of the growing season (Figure 7, Appendix E).

We estimate at least one flood event accessed the floodplain of Back Creek during 2015 (Table 13, Appendix E). The peak stage reading for the cork crest gage on Back Creek (~ 60 ft. upstream of the confluence with West Branch) was 0.40 ft. above the current bankfull elevation at that location. The design bankfull elevation in the vicinity of the current CSG location is approximately 606 ft. HOBO gage observations show at least two episodes of stream level increase greater than 0.2 feet in the fall, during the time period for which data were available.

2.0. Monitoring Methods

2.1. Vegetation Methodologies

Twenty six (26) permanent vegetation plots were monitored according to the CVS-EEP Level 2 Vegetation Monitoring Protocol Version 4.2 (Lee *et al.* 2008). Additionally, MMI supplemented all permanent plot corners with 3' tall aluminum poles painted blaze orange and took efforts to correct any previous data errors. An additional twenty five (25) warranty plots were established at systematic random locations and surveyed for planted living native woody stems. Each 108'X10' plot was temporarily marked using a measuring tape with end points recorded using a Trimble hand-held GPS.

2.2. Wetland Methodologies

All four (4) RDS groundwater Monitoring Gauges were downloaded most recently in November, 2015, and will continue to be downloaded at regular intervals to ensure that the gauges are functioning properly.

2.3. Stream Methodologies

Longitudinal Profiles were conducted along the entire length of West Branch, East Branch North Branch, and three 1,000-foot reaches on Back creek (Stations: 14+15 to 24+15, 26+80 to 40+28, and51+42 to 62+22. Twenty four (24) of the permanent stream cross sections previously established on

the site were surveyed using a Trimble RDK survey-grade GPS unit. Four cross sections (#'s 12, 13, 17, 18) were too overgrown to be surveyed using GPS equipment so they were surveyed with an automatic level and rod and calibrated to known bank pin elevations. Wolman pebble counts were conducted at 20 of the 28 permanent cross-sections and used to calculate the sediment distribution at the cross-sections.

3.0. References

Lee, Michael T., Peet, Robert K., Roberts, Steven D., Wentworth, Thomas R. (2008). *CVS-EEP Protocol for Recording Vegetation version 4.2, October 2008.* Retrieved September 2011, from: http://cvs.bio.unc.edu/methods.htm

AECOM March 2015. Monitoring Report Year #1

Rosgen, D. L. 1996 Applied River Morphology. Wildlands Hydrology Books, Pagosa Springs, CO.

Weakly, A.S. (2011) *Flora of the Carolinas, Virginia, Georgia and the Surrounding Areas* University of North Carolina at Chapel Hill Woman, M. G. 1954. *A Method of Sampling Coarse River-Bed Material*, Transactions of American Geophysical Union 35:951-956

Various NCDMS and NCDEQ DWR Guidance Documents as referenced.

Appendix A: Project Background Data

Table 1. Project Components & Mitigation Credits

				Table 1	. Project C	omponents a	and Mitig	ation Cre	dits				
				Heath l	Dairy Road	Stream Rest	oration/ I	DMS No. 1	170				
						Mitigation Cre	dits						
	Stre	am	I	Riparian Wetla	nd	Non-riparian Wetland Buffer			fer C	rogen ffset	Phosp	horous Offset	
Туре	R	RE	R		RE	R		RE					
Totals	8431	127			0.54								
					F	Project Compor	nents						
Project Comp	ponent	Statio	ning/Locat	tion Exis	sting Footage	or Acreage	Appro	bach	Restoration o Equiv	r Restoration alent	Re Fo	storation	Mitigation Ratio
Back Cree	ek 1	10+	-00 – 11+5	5	149 LF	-	P	2	Resto	ration		155 LF	1:1
Back Cree	ek 2	11+	-55 – 16+2	5	470 LF	=	E	1	Enhand	ement		470 LF	1.5:1
Back Cree	ek 3	16+	-25 – 17+0	0	75 LF		P	1	Resto	ration		75 LF	1:1
Back Cree	ek 4	17+	-00 – 20+9	0	390 LF	=	E	1	Enhand	ement	:	390 LF	1.5:1
Back Cree	ek 5	20+	-90 – 24+6	0	374 LF	-	P	1	Resto	ration	:	370 LF	1:1
Back Cree	ek 6	24+	-60 – 25+6	0	100 LF	-	E	1	Enhand	ement		100 LF	1.5:1
Back Cree	ek 7	25+	-60 – 63+4	5	3450 L	F	P1,	P2	Resto	ration	3	785 LF	1:1
West Pres	erve	14-	+58 - 18+7	5	417 LF	-	N	A	Preser	vation		417 LF	5:1
West Bran	ch 1	10+	-00 – 26+1	2	1523 L	F	P	1	Resto	Restoration		1590 LF*	
North Bran	ch 1	10+	-30 – 21+9	7	495 LI		P2		Resto	Restoration		1167 LF	
East Prese	erve	5+	+01 - 7+20	219 L		=	NA		Preser	Preservation		219 LF	5:1
East Brand	ch 1	9+9	96 – 15+93	3 580 L		-	P1		Resto	Restoration		547 LF*	1:1
UT to Wes	t Br.	10+	-36 – 11+3	.8 102		-	P1		Restoration		102 LF		1:1
Wetland	A1		NA		1.075 A	1.075 AC		NA		Preservation		.075 AC	5:1
Wetland	A2		NA		0.136AC		NA		Enhand	Enhancement		.136 AC	2:1
Wetland	В		NA		0.307 A	0.307 AC		NA		Enhancement		.307 AC	2:1
Wetland	С		NA	VA		0.104 AC		NA		Enhancement		.104 AC	2:1
Wetland	E		NA		0.010 A	C .	NA		Enhancement		0.010 AC		2:1
Wetland	F		NA		0.036 A	C	NA		Enhand	Enhancement		.036 AC	2:1
Wetland	11		NA		0.007 A	C	N	4	Preser	vation	0	.007 AC	5:1
Wetland	J		NA		0.090 A	C	N	4	Preser	vation	0	.090 AC	5:1
Wetland	К		NA		0.010 A	C	N	4	Enhand	ement	0	.010 AC	2:1
Wetland	L		NA		0.007 A	C	N	4	Preser	vation	0	.007 AC	5:1
Wetland	М		NA		1.4 AC	;	N	4	Resto	ration		1.4 AC	1:01
					Co	mponent Sum	mation			•			
Restoration	Level	Stre	am		Riparian	Wetland		Non-Rip	arian Wetland	Bu	ffer		Upland
		(linear	r feet)		(acre	es)		(acres)	(squa	re feet)	_	(acres)
			ā. 4	Riverine	_	Non-Riverine							
Restoration		//	91		_								30
Enhancement					_	0.6							
Enhancement		96	00										
Ennancement II			_								_		
						4.4.0					_		
Preservation		63	00			1.18					_		
High Quality Preser	rvation												

Table 2. Project Activity and Reporting HistoryHeath Dairy Road Stream Restoration/ DMS No. 170								
Activity or Report	Data Collection Complete	Completion or Delivery						
Restoration Plan	Apr-09	May-09						
CLOMR	Jun-10	Mar-11						
LOMR	Apr-14	Oct-15						
Final Design – Construction Plans	NA	Jun-11						
Construction	NA	Aug-13						
Permanent seed applied to entire site	NA	Aug-13						
Plantings for entire site	NA	Feb-14						
Mitigation Plan (Year 0 Monitoring – baseline)	Apr-14	May-14						
Year 1 Monitoring	Nov-14	Mar-15						
Year 2 Monitoring	Sep-15	Jan-16						
Year 3 Monitoring								
Year 4 Monitoring								
Year 5 Monitoring								

Table 3. Project Contacts

Table 3. Project Contact Table								
Heath Dairy	Heath Dairy Road Stream Restoration/ DMS No. 170							
Owner	Melonie Allen							
	217 W. Jones Street Suite 300A							
NCDENR Division of Mitigation	Raleigh, NC 27603							
Services	919-368-9352							
Designer	Grant Ginn							
	7 Florida Avenue							
Wolf Creek Engineering, PLLC	Weaverville, NC, 28787							
	828-658-3649							
Landowner								
Mr. Phillip Ridge	3562 Plainfield Road							
	Sophia, NC 27350							
	336-861-4555							
Dr. Edward Shackleford	203 Shannon Road							
	Asheboro, NC 27203							
	336-625-6222							
	Backwater Environmental							
Construction Contractor	515 S. Kennedy Avenue							
	Eden, NC 27288							
	Carolina Silvics, Inc.							
Planting Contractor	908 Indian Trail Road							
	Edenton, NC 27932							
	Backwater Environmental							
Seeding Contractor	515 S. Kennedy Avenue							
	Eden, NC 27288							
Monitoring Performer	Richard K. Mogensen							
	P.O. Box 690429							
Mogensen Mitigation, Inc.	Charlotte, NC, 28227							
	704-576-1111							

Table 4. Project Attributes

He	Table 4. Project B eath Dairy Road St	aseline Informa ream Restoratio	tion and Attri on / DMS Proje	butes ect #17	70				
	P	roject Informatio	on						
Project Name			Heath Dairy F	arm Ro	oad Stream Resto	oration			
Project County			Randolph						
Project Area (acres)			56.8						
Project Coordinates (lat/long)			35°46'47.85"N	/ 79°5	50'51.50"W				
	Projec	t Watershed Su	mmary						
Physiographic Province			Piedmont						
Project River Basin			Yadkin						
USGS HUC for Project			3.0401E+12						
NCDWQ Sub-basin for Project			3/7/2009						
Project Drainage Area (acres)			1722						
Project Drainage Area Percentage of Impervious Area			< 2%						
CGIA Land Use Classification			Agricultural La	ınd – C	cropland and Pas	ture			
	Reach Summa	ry Information (Pre-restoratio	n)					
Parameters		Back Creek	West Bran	nch	North Branch	East	Branch	UT to West Branch	
Length of Reach (feet)		5008	1940		495	7	799	102	
Valley Classification		VIII	II		II			II	
Drainage area (acres)		1722	90		730	1	160	32	
NCDWQ Stream ID Score		NA	NA		NA		NA	NA	
NCDWQ Water Quality Classification		WS-II, HOW	WS-II. HQ	W	WS-II. HOW	WS-I	I. HQW	WS-II, HQW	
Morphological Description		G4. F4	G4		F4		G4	G4	
Evolutionary Trend		NA	NA		NA	NA		NA	
Underlying Mapped Soils		101	(DoB) D	oque a	nd (BtC2) Badin-	Tarrus (Complex	101	
		<u> </u>	(202) W/ell	Draine	nd (Dt02) Dtain		ained		
Soil Hydrig Status		Non hydrig	Non hydr	braine	Non bydrie	Non	budrio	Non hydria	
		Non-nyunc	NOT-Hyu		Non-Hyunc Non-		on-nyune non-nyun		
		Detail Chudu	Nana		Detail Study None			None	
		Detail Study	Masia Mixed Llardward Forest (Diadmont Subture)				None		
			Mesic Mixed Hardwood Forest (Pleamont Subtype)						
Percent Composition of Exotic Invasive Vegetation		20%	20%		20%	2	20%	20%	
	Wetlan	d Summary Info	ormation		1	1			
Parameters		Wetland A	Wetlan	Wetland B Wetland			C Wetland D - L		
Size of Wetland)acres)		1.21	0.31		0.1			0.26	
Wetland Type		Riparian	Riparia	an	Riparian			Riparian	
Mapped Soil Series				(BtC2	2) Badin-Tarrus C	omplex			
Drainage Class				Mo	derately Well Dra	ined			
Soil Hydric Series		Soil s	eries not hydrid	but s	oils exhibited low	-chroma	a colors a	nd mottling	
Source of Hydrology		Surface draina	ge Surface dra	ainage	Toe of Slope Se	eepage	Toe	of Slope Seepage	
Hydrologic Impairment		No	No		No			No	
Native Vegetation			Piedmont B	ottomla	and Forest / Pied	mont Al	luvial For	est	
Percent Composition of Exotic Invasive Vegetation		20%	20%		20%			20%	
	Regu	latory Consider	ations						
Regulation		Applicable			Resolved	Su	pporting	Documentation	
Waters of the US – Section 404		Yes			Yes				
Waters of the US – Section 401	Yes			Yes					
Endangered Species Act		Yes		1	Yes				
Historic Preservation Act		Yes		<u> </u>	Yes	2/1/20			
CZMA/CAMA		No			1 es 2/1/2 ΝΔ				
FEMA Floodplain Compliance		Yes			Yes				
Essential Fisheries Habitat	No NA								

Appendix B: Visual Assessment Data

		Visual Stream Assement -	Back Creek				
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%
	(Rime and Run units)	2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	50	76			66%
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	76	76			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	60	76			79%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	70	76			92%
		2. Thalweg centering at downstream of meander (Glide)	76	76			100%
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.	-		0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse	-		0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	102	104			98%
ondetares	2. Grade Control	Grade control structures exhibiting maintenance of grade across	42	43			98%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	40	43			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	43	43			100%
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	104	104			100%

Table 5.1. Visual Stream Assessment

Heath Dairy_170. Monitoring Year 2 of 5. MMI _ January 2016.

Table 5.2. Visual Stream Assessment

		Visual Stream Assement - West Br	anch to Bad	ck Creek			
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Numberin As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
	(Rille and Run units)	2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	52	52			100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	52	52			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	52	52			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	52	52			100%
		2. Thalweg centering at downstream of meander (Glide)	52	52			100%
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
			-				
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	84	84			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	84	84			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	84	84			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	84	84			100%
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	84	84			100%

Heath Dairy_170. Monitoring Year 2 of 5. MMI _ January 2016.

Table

5.3. Visual Stream Assessment

		Visual Stream Assement - North Br	anch to Ba	ck Creek			
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing	Total Numberin As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
	2 Riffle Condition	<u>Degradation</u> - Evidence of downcutting Texture/Substrate - Riffle maintains coarser substrate	7	14	0	0	100%
	3. Meander Pool		1	14			50%
	Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth <u>></u> 1.6) 	14	14			100%
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	14	14			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	14	14			100%
		2. Thalweg centering at downstream of meander (Glide)	14	14			100%
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	15	15			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	15	15			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	15	15			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	15	15			100%
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	15	15			100%

Table 5.4. Visual Stream Assessment

		Visual Stream Assement - East Bra	anch to Bac	k Creek			
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	8	14			57%
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	14	14			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	14	14			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	14	14	1		100%
		2. Thalweg centering at downstream of meander (Glide)	14	14	1		100%
	•		•		•		•
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse	1		0	0	100%
					-		
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	17	17			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	17	17			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	17	17			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	17	17			100%
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	17	17			100%

Heath Dairy_170. Monitoring Year 2 of 5. MMI _ January 2016.

Table 6. Vegetation Condition Assessment

Planted Acreage	32					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	N/A	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY2 criteria.	0.1 acres	orange cross- hatch polygon	4	11.07	34.6%
			Total	0	11.07	34.6%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%
		Cur	nulative Total	4	11.07	34.6%

Easement Acreage 56.8 Mapping % **o**f Threshold CCPV Number of Combined Easement Polygons Vegetation Category Definitions (SF) Depiction Acreage Acreage Areas or points (if too small to render as polygons at 4. Invasive Areas of Concern 0 N/A 0 0.00 0.0% map scale). Areas or points (if too small to render as polygons at 0 0 5. Easement Encroachment Areas N/A 0.00 0.0% map scale).

Cross Section 1 (upstream) MY2

Cross Section 2 (upstream) MY2

Cross Section 3 (upstream) MY2

Cross Section 1 (downstream) MY2

Cross Section 2 (downstream) MY2

Cross Section 3 (downstream) MY2

Cross Section 4 (upstream) MY2

Cross Section 5 (upstream) MY2

Cross Section 6 (upstream) MY2

Cross Section 4 (downstream) MY2

Cross Section 5 (downstream) MY2

Cross Section 6 (downstream) MY2

Cross Section 7 (upstream) MY2

Cross Section 8 (upstream) MY2

Cross Section 9 (upstream) MY2

Cross Section 7 (downstream) MY2

Cross Section 8 (downstream) MY2

Cross Section 9 (downstream) MY2

Cross Section 10 (upstream) MY2

Cross Section 11 (upstream) MY2

Cross Section 12 (upstream) MY2

Cross Section 10 (downstream) MY2

Cross Section 11 (downstream) MY2

Cross Section 12 (downstream) MY2

Cross Section 13 (upstream) MY2

Cross Section 14 (upstream) MY2

Cross Section 15 (upstream) MY2

Cross Section 13 (downstream) MY2

Cross Section 14 (downstream) MY2

Cross Section 15 (downstream) MY2

Cross Section 16 (upstream) MY2

Cross Section 17 (upstream) MY2

Cross Section 16 (downstream) MY2

Cross Section 17 (downstream) MY2

Cross Section 18 (upstream) MY2

Cross Section 18 (downstream) MY2

Cross Section 19 (upstream) MY2

Cross Section 20 (upstream) MY2

Cross Section 21 (upstream) MY2

Cross Section 19 (downstream) MY2

Cross Section 20 (downstream) MY2

Cross Section 21 (downstream) MY2

Cross Section 22 (downstream) MY2

Cross Section 23 (downstream) MY2

Cross Section 24 (downstream) MY2

Cross Section 22 (upstream) MY2

Cross Section 23 (upstream) MY2

Cross Section 24 (upstream) MY2

Cross Section 25 (upstream) MY2

Cross Section 26 (upstream) MY2

Cross Section 25 (downstream) MY2

Cross Section 26 (downstream) MY2

Cross Section 27 (upstream) MY2

Cross Section 27 (downstream) MY2

Cross Section 28 (upstream) MY2

Cross Section 28 (downstream) MY2

Vegetation Monitoring Plot 1

MY-2, 2015

Vegetation Monitoring Plot 2 MY-2, 2015

Vegetation Monitoring Plot 3

MY-2, 2015

Vegetation Monitoring Plot 4 MY-2, 2015

Vegetation Monitoring Plot 5

MY-2, 2015

Vegetation Monitoring Plot 6

MY-2, 2015

- Vegetation Monitoring Plot 7
- MY-2, 2015

Vegetation Monitoring Plot 8 MY-2, 2015

- Vegetation Monitoring Plot 9
- MY-2, 2015

Vegetation Monitoring Plot 10 MY-2, 2015

Vegetation Monitoring Plot 11 MY-2, 2015

Vegetation Monitoring Plot 12 MY-2, 2015

Vegetation Monitoring Plot 13 MY-2, 2015

Vegetation Monitoring Plot 14 MY-2, 2015

Vegetation Monitoring Plot 15 MY-2, 2015

Vegetation Monitoring Plot 16 MY-2, 2015

Vegetation Monitoring Plot 17 MY-2, 2015

Vegetation Monitoring Plot 18 MY-2, 2015

Vegetation Monitoring Plot 20 MY-2, 2015

- Vegetation Monitoring Plot 21 M
- MY-2, 2015

Vegetation Monitoring Plot 22 MY-2, 2015

Vegetation Monitoring Plot 23

MY-2, 2015

Vegetation Monitoring Plot 24 MY-2, 2015

Vegetation Monitoring Plot 25 MY-2, 2015

Vegetation Monitoring Plot 26 MY-2, 2015

Appendix C: Vegetation Plot Data

Plot	Latitude /Longitude Starting Point	Latitude /Longitude Ending Point	Counted Stems	Stems per Acre	Success Criteria Met?
1	35.787100, -79.852417	35.786850, -79.852400	7	283	No
2	35.786150, -79.852383	35.786400, -79.852417	13	526	Yes
3	35.785467, -79.852483	35.785750, -79.852600	4	162	No
4	35.784973, -79.851883	35.784860, -79.851891	5	202	No
5	35.784508, -79.852310	35.784447, -79.852318	4	162	No
6	35.783806, -79.852463	35.783702, -79.852479	4	162	No
7	35.783470, -79.852600	35.783394, -79.852617	8	324	Yes
8	35.783180, -79.852570	35.783077, -79.852417	11	445	Yes
9	35.782967, -79.852850	35.782900, -79.853217	0	0	No
10	35.782650, -79.853550	35.782650, -79.853817	2	81	No
11	35.782963, -79.851872	35.783020, -79.851824	10	405	Yes
12	35.782692, -79.852066	35.782637, -79.851966	5	202	No
13	35.782413, -79.850802	35.782378, -79.850614	4	162	No
14	35.782097, -79.850861	35.782038, -79.850722	6	243	No
15	35.782091, -79.849497	35.782047, -79.849347	4	162	No
16	35.781376, -79.849327	35.781290, -79.849232	8	324	Yes
17	35.780955, -79.848427	35.780816, -79.848395	6	243	No
18	35.780235, -79.848663	35.780146, -79.848583	7	283	No
19	35.780027, -79.845930	35.779970, -79.845721	3	121	No
20	35.780458, -79.846010	35.780414, -79.845892	5	202	No
21	35.780480, -79.846987	35.780414, -79.846869	8	324	Yes
22	35.781597, -79.847633	35.781537, -79.847472	7	283	No
23	35.779816, -79.844849	35.779757, -79.844753	8	324	Yes
24	35.780655, -79.844498	35.780586, -79.844518	8	324	Yes
25	35.780693, -79.844170	35.780712, -79.844086	11	445	Yes
	Project Avera	age	6	255	No

Table 7. Vegetation Warranty Plot Attainment Summary

Plot #	Stream/ Wetland	Volunteer Stems ²	Total Stems ³	Success Criteria Met?
1	405	0	405	Yes
2	405	243	647	Yes
3	405	243	647	Yes
4	162	0	162	No
5	202	0	202	No
6	162	0	162	No
7	0	0	0	No
8	243	364	607	No
9	121	445	567	No
10	486	0	486	Yes
11	162	0	162	No
12	162	0	162	No
13	81	81	162	No
14	81	202	283	No
15	40	40	81	No
16	162	0	162	No
17	405	40	445	Yes
18	405	0	405	Yes
19	283	81	364	No
20	40	0	40	No
21	40	40	81	No
22	40	0	40	No
23	324	81	405	Yes
24	243	324	567	No
25	121	40	162	No
26	162	243	405	No
Project Avg	205	95	300	No

Table 8. Vegetation Plot Success Criteria Attainment Summary

¹Stream/Wetland Stems = Native planted trees and shrubs. Does NOT include live stakes or vines. ²Volunteers = Native volunteer trees and shrubs. Does NOT include vines or planted stems. ³Total = Planted + volunteer native woody stems, including live stakes. Excludes exotics & vines.

Table 9.1. Vegetation Plot Summary

	Speci		170-01-0001			1	70-01-00	02	1	70-01-00	03	1	70-01-00	04	1	70-01-00	05	170-01-0006		06
Scientific Name	Common Name	Туре	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т
Betula nigra	river birch	Tree																		
Carya glabra	pignut hickory	Tree				2	2	2	1	1	1									
Celtis laevigata	sugarberry	Tree																		
Diospyros virginiana	common persimmon	Tree	5	5	5	1	1	1	1	1	1							1	1	1
Fraxinus pennsylvanica	green ash	Tree							3	3	3							1	1	1
Juglans nigra	black walnut	Tree						2			3									
Liquidambar styraciflua	sweetgum	Tree	1	1	1			1												
Liriodendron tulipifera	tuliptree	Tree	2	2	2	1	1	4	1	1	1				1	1	1			
Nyssa sylvatica	blackgum	Tree				2	2	2												
Platanus occidentalis	American sycamore	Tree										3	3	3	2	2	2	2	2	2
Quercus	oak	Tree							1	1	1									
Quercus falcata	southern red oak	Tree				1	1	1							1	1	1			
Quercus michauxii	swamp chestnut oak	Tree																		
Quercus nigra	water oak	Tree																		
Quercus phellos	willow oak	Tree				3	3	3							1	1	1			
Quercus rubra	northern red oak	Tree	2	2	2				3	3	3	1	1	1						
Salix nigra	black willow	Tree																		
Ulmus alata	winged elm	Tree									3									
Ulmus americana	American elm	Tree																		
	Ste	m count	10	10	10	10	10	16	10	10	16	4	4	4	5	5	5	4	4	4
	si	ize (ares)		1			1			1			1			1			1	
	size	(ACRES)		0.02			0.02			0.02			0.02			0.02			0.02	
	Speci	ies count	4	4	4	6	6	8	6	6	8	2	2	2	4	4	4	3	3	3
	Stems	oer ACRE	405	405	405	405	405	648	405	405	648	162	162	162	202	202	202	162	162	162

Color Codes for Planted Tree Density	
Exceeds 320 trees/acre requirements by 10%	
Exceeds 320 trees/acre requirements, but by less than 10%	
Fails to meet 320 trees/acre requirements, by less than 10%	
Fails to meet 320 trees/acre requirements by more than 10%	

Table 9.2. Vegetation Plot Summary

		Species	170-01-0007		17	70-01-00	08	1	70-01-00	09	17	70-01-00	10	1	70-01-00	11	1	70-01-00	12	
Scientific Name	Common Name	Туре	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т
Betula nigra	river birch	Tree										2	2	2						
Carya glabra	pignut hickory	Tree													1	1	1			
Celtis laevigata	sugarberry	Tree																		
Diospyros virginiana	common persimmon	Tree										3	3	3						
Fraxinus pennsylvanica	green ash	Tree				1	1	1										3	3	3
Juglans nigra	black walnut	Tree									11									
Liquidambar styraciflua	sweetgum	Tree						2												
Liriodendron tulipifera	tuliptree	Tree				2	2	5	2	2	2	2	2	2	2	2	2	1	1	1
Nyssa sylvatica	blackgum	Tree																		
Platanus occidentalis	American sycamore	Tree				1	1	1												
Quercus	oak	Tree										1	1	1	1	1	1			
Quercus falcata	southern red oak	Tree										1	1	1						
Quercus michauxii	swamp chestnut oak	Tree																		
Quercus nigra	water oak	Tree				1	1	1	1	. 1	1									
Quercus phellos	willow oak	Tree				1	1	1				1	1	1						
Quercus rubra	northern red oak	Tree										2	2	2						
Salix nigra	black willow	Tree						3												
Ulmus alata	winged elm	Tree																		
Ulmus americana	American elm	Tree						1												
	Ste	em count	0	0	0	6	6	15	3	3	14	12	12	12	4	4	4	4	4	4
	s	ize (ares)		1			1			1	•		1			1			1	
	size	e (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02	
	Spec	ies count	0	0	0	5	5	8	2	2	3	7	7	7	3	3	3	2	2	2
	Stems	per ACRE	0	0	0	243	243	607	121	121	567	486	486	486	162	162	162	162	162	162

Color Codes for Planted Tree Density									
Exceeds 320 trees/acre requirements by 10%									
Exceeds 320 trees/acre requirements, but by less than 10%									
Fails to meet 320 trees/acre requirements, by less than 10%									
Fails to meet 320 trees/acre requirements by more than 10%									

Table 9.3. Vegetation Plot Summary

		Species	17	70-01-00	13	1	70-01-00	14	1	70-01-00	15	1	70-01-00	16	17	70-01-00	17	17	0-01-00	18
Scientific Name	Common Name	Туре	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Betula nigra	river birch	Tree																1	1	1
Carya glabra	pignut hickory	Tree																		
Celtis laevigata	sugarberry	Tree			1															
Diospyros virginiana	common persimmon	Tree				1	1	1	1	1	1				3	3	3			
Fraxinus pennsylvanica	green ash	Tree										2	2	2				9	9	9
Juglans nigra	black walnut	Tree			1			3									1			
Liquidambar styraciflua	sweetgum	Tree						1			1									
Liriodendron tulipifera	tuliptree	Tree	1	1	1	1	1	1							1	1	1			
Nyssa sylvatica	blackgum	Tree																		
Platanus occidentalis	American sycamore	Tree																		
Quercus	oak	Tree										2	2	2	1	1	1			
Quercus falcata	southern red oak	Tree	1	1	1															
Quercus michauxii	swamp chestnut oak	Tree																		
Quercus nigra	water oak	Tree																		
Quercus phellos	willow oak	Tree													2	2	2			
Quercus rubra	northern red oak	Tree													3	3	3			
Salix nigra	black willow	Tree																		
Ulmus alata	winged elm	Tree																		
Ulmus americana	American elm	Tree						1												
	Ste	em count	2	2	4	2	2	7	1	1	2	4	4	4	10	10	11	10	10	10
	s	ize (ares)		1			1			1			1			1			1	
	size	e (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02	
	Spec	ies count	2	2	4	2	2	5	1	1	2	2	2	2	5	5	6	2	2	2
	Stems	per ACRE	81	81	162	81	81	283	40	40	81	162	162	162	405	405	445	405	405	405

Color Codes for Planted Tree Density
Exceeds 320 trees/acre requirements by 10%
Exceeds 320 trees/acre requirements, but by less than 10%
Fails to meet 320 trees/acre requirements, by less than 10%
Fails to meet 320 trees/acre requirements by more than 10%

Table 9.4. Vegetation Plot Summary

		Species	1	70-01-00	19	1	70-01-00	20	170-01-0021			170-01-0022			17	70-01-00	23	170-01-0024		
Scientific Name	Common Name	Туре	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Betula nigra	river birch	Tree																		
Carya glabra	pignut hickory	Tree																		
Celtis laevigata	sugarberry	Tree																		
Diospyros virginiana	common persimmon	Tree													2	2	4			
Fraxinus pennsylvanica	green ash	Tree	1	1	1				1	1	. 1	. 1	1	1	2	2	2	1	1	7
Juglans nigra	black walnut	Tree			1						1								\square	1
Liquidambar styraciflua	sweetgum	Tree																	\square	
Liriodendron tulipifera	tuliptree	Tree																		
Nyssa sylvatica	blackgum	Tree													1	1	1		\square	1
Platanus occidentalis	American sycamore	Tree				1	1	1							1	1	1		\square	
Quercus	oak	Tree													1	1	1			
Quercus falcata	southern red oak	Tree	3	3	3														\square	
Quercus michauxii	swamp chestnut oak	Tree																	\square	
Quercus nigra	water oak	Tree																2	2	2
Quercus phellos	willow oak	Tree	1	1	1										1	1	1	2	2	2
Quercus rubra	northern red oak	Tree	2	2	2													1	1	1
Salix nigra	black willow	Tree																		
Ulmus alata	winged elm	Tree																		
Ulmus americana	American elm	Tree			1															
	Ste	em count	7	7	9	1	1	1	1	1	. 2	1	1	1	8	8	10	6	6	14
	S	ize (ares)		1			1			1			1			1			1	
	size	e (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02	
	Spec	ies count	4	4	6	1	1	1	1	1	. 2	1	1	1	6	6	6	4	4	6
	Stems	per ACRE	283	283	364	40	40	40	40	40	81	40	40	40	324	324	405	243	243	567

Color Codes for Planted Tree Density
Exceeds 320 trees/acre requirements by 10%
Exceeds 320 trees/acre requirements, but by less than 10%
Fails to meet 320 trees/acre requirements, by less than 10%
Fails to meet 320 trees/acre requirements by more than 10%

Table 9.5. Vegetation Plot Summary

			Plot Data 2015 Project Total Stem Counts & Ann							Annual N	Mean Density												
		Species	1	70-01-00	25	1	70-01-00	026		MY5 (***	*)		MY4 (***	*)	MY3 (***)			MY2 (2015)			N	IY1 (2014	1)
Scientific Name	Common Name	Туре	PnoLS	P-all	Т	PnoLS	P-all	т										PnoLS	P-all	Т	PnoLS	P-all	т
Betula nigra	river birch	Tree							-	-	-	-	-	-	-	-	-	3	3	3	2	2	2
Carya glabra	pignut hickory	Tree							-	-	-	-	-	-	-	-	-	4	4	4	6	6	6
Celtis laevigata	sugarberry	Tree							-	-	-	-	-	-	-	-	-			1			
Diospyros virginiana	common persimmon	Tree							-	-	-	-	-	-	-	-	-	18	18	20	12	12	12
Fraxinus pennsylvanica	green ash	Tree	2	. 2	2	. 1	. 1	L 1	-	-	-	-	-	-	-	-	-	28	28	34	19	19	19
Juglans nigra	black walnut	Tree			1				-	-	-	-	-	-	-	-	-			25			
Liquidambar styraciflua	sweetgum	Tree							-	-	-	-	-	-	-	-	-	1	1	6			
Liriodendron tulipifera	tuliptree	Tree							-	-	-	-	-	-	-	-	-	17	17	23	7	7	7
Nyssa sylvatica	blackgum	Tree							-	-	-	-	-	-	-	-	-	3	3	4			
Platanus occidentalis	American sycamore	Tree							-	-	-	-	-	-	-	-	-	10	10	10	3	3	3
Quercus	oak	Tree							-	-	-	-	-	-	-	-	-	7	7	7	18	18	18
Quercus falcata	southern red oak	Tree				2	2	2 2	-	-	-	-	-	-	-	-	-	9	9	9	3	3	3
Quercus michauxii	swamp chestnut oak	Tree							-	-	-	-	-	-	-	-	-				1	1	1
Quercus nigra	water oak	Tree							-	-	-	-	-	-	-	-	-	4	4	4	3	3	3
Quercus phellos	willow oak	Tree							-	-	-	-	-	-	-	-	-	12	12	12	15	15	15
Quercus rubra	northern red oak	Tree	1	. 1	. 1	. 1	. 1	l 1	-	-	-	-	-	-	-	-	-	16	16	16	1	1	1
Salix nigra	black willow	Tree						6	-	-	-	-	-	-	-	-	-			9			
Ulmus alata	winged elm	Tree							-	-	-	-	-	-	-	-	-			3			1
Ulmus americana	American elm	Tree							-	-	-	-	-	-	-	-	-			3			
	Ste	em count	3	3	4	4	. 4	10	-	-	-	-	-	-	-	-	-	132	132	193	90	90	90
	s	ize (ares)		1			1	-		1			1	-		1	-		1			1	
size (ACRES)			0.02			0.02			0.02			0.02			0.02			0.02			0.02		
	Spec	ies count	2	2	3	3	3	3 4	-	-	-	-	-	-	-	-	-	13	13	18	12	12	12
	Stems	per ACRE	121	121	162	162	162	405	-	-	-	-	-	-	-	-	-	205	205	300	1821	1821	1821

 Color Codes for Planted Tree Density

 Exceeds 320 trees/acre requirements by 10%

 Exceeds 320 trees/acre requirements, but by less than 10%

 Fails to meet 320 trees/acre requirements, by less than 10%

 Fails to meet 320 trees/acre requirements by more than 10%

Appendix D: Stream Geomorpology Data

Figure 3.1 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-1, Pool	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		613.16
Bankfull Cross-Sectiona	al Area (ft ²)	13.80
Bankfull Width (ft)		19.57
Flood Prone Area Elevati	on (ft)	614.20
Flood Prone Width (ft)		32.00
Bankfull Mean Depth (ft)	0.96
Bankfull Max Depth (ft)		1.05
W/D Ratio		20.38
Entrenchment Ratio		1.64
Bank Height Ratio		1.00

XS-1: Downstream

Figure 3.2 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-2, Riffle	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		613.43
Bankfull Cross-Sectional Area (ft ²)		10.70
Bankfull Width (ft)		15.87
Flood Prone Area Elevation (ft)		614.46
Flood Prone Width (ft)		25.30
Bankfull Mean Depth (ft)		0.75
Bankfull Max Depth (ft)		1.03
W/D Ratio		21.16
Entrenchment Ratio		1.59
Bank Height Ratio		1.00

XS-2: Downstream

Station	Elevation	Notes
0.00	615.13	LPIN
4.33	615.00	
7.95	614.63	
8.00	614.71	
10.45	614.25	
11.76	614.12	
14.84	613.86	TLB
16.57	613.41	
17.91	613.03	
19.56	612.51	
21.29	612.42	
22.85	612.40	THW
24.17	612.44	
26.14	612.43	
28.72	612.81	
30.71	613.43	TRB
32.90	614.38	
35.12	614.80	
37.59	615.22	
39.74	615.16	
41.90	614.97	
44.29	615.41	
46.24	616.10	
49.28	616.54	RPIN

Figure 3.3 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-3, Riffle	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		611.33
Bankfull Cross-Sectional Area (ft ²)		30.10
Bankfull Width (ft)		15.79
Flood Prone Area Elevation (ft)		615.70
Flood Prone Width (ft)		100.00
Bankfull Mean Depth (ft)		1.21
Bankfull Max Depth (ft)		2.87
W/D Ratio		13.05
Entrenchment Ratio		6.33
Bank Height Ratio		1.00

XS-3: Upstream

XS-3: Downstream

Figure 3.4 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-4, Pool	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		610.38
Bankfull Cross-Sectional Area (ft ²)		30.00
Bankfull Width (ft)		18.56
Flood Prone Area Elevation (ft)		613.29
Flood Prone Width (ft)		100.00
Bankfull Mean Depth (ft	Bankfull Mean Depth (ft)	
Bankfull Max Depth (ft)		2.91
W/D Ratio		10.92
Entrenchment Ratio		5.39
Bank Height Ratio		1.00

XS-4: Upstream

XS-4: Downstream

Station	Elevation	Notes
0.00	610.88	LPIN
3.89	610.82	
8.29	611.07	
11.80	611.05	
15.04	610.58	TLB
16.44	610.29	
18.08	609.96	
19.20	609.48	LEW
20.47	608.81	
21.73	608.05	
23.11	607.84	
24.04	607.65	
25.69	607.59	
27.03	607.47	THW
29.01	607.66	
30.59	609.05	REW
31.34	609.48	
32.29	609.93	
33.60	610.38	TRB
35.98	611.01	
43.10	611.92	
51.42	612.37	RPIN

Figure 3.5 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-5, Pool	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		608.92
Bankfull Cross-Sectional Area (ft ²)		29.60
Bankfull Width (ft)		17.33
Flood Prone Area Elevation (ft)		612.23
Flood Prone Width (ft)		50.00
Bankfull Mean Depth (ft)		2.06
Bankfull Max Depth (ft)		3.30
W/D Ratio		8.41
Entrenchment Ratio		2.89
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	610.20	LPIN
0.19	609.79	
2.27	609.92	
6.28	609.76	
11.28	609.58	
14.52	609.22	
16.07	609.45	TLB
16.94	609.04	
17.60	608.52	
18.27	607.91	
19.47	607.02	
20.64	606.45	
21.73	606.39	LEW
22.58	606.18	
24.04	605.62	THW
24.73	605.58	
26.28	605.86	
27.25	606.35	REW
28.12	606.71	
28.88	607.10	
29.69	608.11	
31.50	608.92	
33.41	609.10	TRB
35.46	609.12	
37.71	609.12	
41.24	609.68	
45.24	610.16	
49.61	610.13	
50.34	610.48	RPIN

Figure 3.6 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-6, Riffle	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		606.466
Bankfull Cross-Sectional Area (ft ²)		13.30
Bankfull Width (ft)		16.04
Flood Prone Area Elevation (ft)		607.87
Flood Prone Width (ft)		75.00
Bankfull Mean Depth (ft)		0.91
Bankfull Max Depth (ft)		1.41
W/D Ratio		17.63
Entrenchment Ratio		4.68
Bank Height Ratio		1.00

XS-6: Upstream

XS-6: Downstream

Station	Elevation	Notes
0.00	607.95	LPIN
3.38	607.92	
6.95	607.60	
10.85	607.06	
15.61	606.76	
19.33	606.47	TLB
20.32	606.29	
21.32	605.86	
22.57	605.50	
24.31	605.06	THW
25.86	604.88	
27.69	605.04	
28.88	605.37	
30.69	605.73	
31.86	605.74	
33.52	606.35	
35.37	606.78	TRB
37.59	606.81	
41.25	606.77	
44.40	607.21	
47.52	607.49	
49.93	607.53	
50.43	607.93	RPIN

Figure 3.7 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-7, Pool	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		606.16
Bankfull Cross-Sectiona	al Area (ft ²)	34.10
Bankfull Width (ft)		15.35
Flood Prone Area Elevati	on (ft)	609.28
Flood Prone Width (ft)		100.00
Bankfull Mean Depth (ft)	1.80
Bankfull Max Depth (ft)		3.12
W/D Ratio		8.53
Entrenchment Ratio		6.52
Bank Height Ratio		1.00

XS-7: Upstream

XS-7: Downstream

Station	Elevation	Notes
0.00	607.90	LPIN
0.37	607.56	
3.16	607.68	
5.90	607.83	
8.46	606.93	
10.37	606.86	
13.62	606.39	
15.69	605.43	
17.76	605.31	TLB
19.10	604.32	
20.23	603.79	
20.91	603.84	LEW
21.95	603.33	
22.65	603.24	
23.71	603.05	THW
26.41	603.33	
27.33	603.85	REW
30.06	604.06	
31.02	605.30	
31.55	606.00	
33.11	606.16	TRB
37.05	606.22	
40.14	606.63	
43.44	607.16	
47.33	607.52	
50.47	607.21	RPIN

Figure 3.8 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-8 - Riffle	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		602.42
Bankfull Cross-Sectional Area (ft ²)		28.10
Bankfull Width (ft)		23.26
Flood Prone Area Elevation (ft)		604.32
Flood Prone Width (ft)		100.00
Bankfull Mean Depth (ft)		1.10
Bankfull Max Depth (ft)		1.90
W/D Ratio		21.15
Entrenchment Ratio		4.30
Bank Height Ratio		1.00

XS-8: Upstream

XS-8: Downstream

Station	Elevation	Notes
0.00	602.44	LPIN
6.29	602.49	
8.76	602.46	
12.32	602.45	
15.53	602.43	
18.31	602.42	TLB
20.94	601.75	
22.97	601.42	
25.40	600.97	
26.81	600.74	
28.36	600.57	
29.34	600.52	THW
31.01	600.53	
32.60	600.60	
34.31	600.72	
35.65	600.85	
37.12	601.09	
38.36	601.57	
39.59	602.13	
41.57	602.54	TRB
44.09	602.48	
47.44	602.50	
50.77	602.42	
53.58	602.41	RPIN

Figure 3.9 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-9, Pool	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		602.77
Bankfull Cross-Sectional Area (ft ²)		52.00
Bankfull Width (ft)		21.64
Flood Prone Area Elevation (ft)		606.52
Flood Prone Width (ft)		100.00
Bankfull Mean Depth (ft)		1.33
Bankfull Max Depth (ft)		3.75
W/D Ratio		16.27
Entrenchment Ratio		4.62
Bank Height Ratio		1.00

XS-9: Upstream

XS-9: Downstream

Station	Elevation	Notes
0.00	603.36	LPIN
0.19	602.98	
2.38	602.91	
5.11	602.87	
8.64	602.74	
12.32	602.77	TLB
13.54	602.37	
15.13	601.65	
16.19	600.19	
18.42	600.15	
20.29	600.44	LEW
23.35	599.49	
24.96	599.03	THW
25.74	599.17	
26.77	599.28	
27.60	599.62	
29.17	599.77	
30.46	599.97	
31.46	600.90	REW
31.60	601.51	
32.32	601.81	
33.96	602.39	TRB
35.93	602.80	
38.36	602.73	
41.62	602.68	
45.92	602.56	
51.44	603.02	RPIN

Figure 3.10 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	OMS Project Number 170	
Cross-Section ID	XS-10, Riffle	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		599.9
Bankfull Cross-Sectional Area (ft ²)		21.90
Bankfull Width (ft)		24.41
Flood Prone Area Elevation (ft)		601.71
Flood Prone Width (ft)		100.00
Bankfull Mean Depth (ft)		0.92
Bankfull Max Depth (ft)		1.81
W/D Ratio		26.54
Entrenchment Ratio		4.10
Bank Height Ratio		1.00

XS-10: Downstream

Station	Elevation	Notes
0.00	600.12	LPIN
0.57	599.71	
4.65	599.88	
8.77	599.92	
12.20	600.16	
15.27	600.12	
17.81	599.90	TLB
19.36	599.46	
20.28	599.09	
21.21	598.75	
22.33	598.27	
23.64	598.09	THW
24.73	598.12	
26.49	598.26	
28.25	598.45	
30.03	598.34	
31.51	598.37	
33.19	598.92	
34.43	599.52	
35.62	599.93	
38.11	599.93	
42.23	600.12	TRB
46.94	600.17	
49.93	600.23	
50.14	600.65	RPIN

Figure 3.11 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-11, Pool	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		599.55
Bankfull Cross-Sectional Area (ft ²)		28.80
Bankfull Width (ft)		19.04
Flood Prone Area Elevation (ft)		602.40
Flood Prone Width (ft)		100.00
Bankfull Mean Depth (ft)		1.64
Bankfull Max Depth (ft)		2.85
W/D Ratio		11.61
Entrenchment Ratio		5.25
Bank Height Ratio		1.00

XS-11: Upstream

XS-11: Downstream

Station	Elevation	Notes
0.00	600.00	LPIN
0.21	599.99	
0.35	600.04	
3.53	600.08	
5.91	600.03	
8.91	600.05	
11.70	599.97	
13.87	599.91	TLB
16.97	599.15	
17.80	598.79	
18.63	597.89	
19.28	597.46	
20.22	597.12	
20.46	597.19	LEW
21.18	596.74	
22.61	596.70	THW
23.53	596.61	
25.02	596.73	
25.86	596.74	
26.37	597.10	REW
27.13	597.46	
28.09	597.95	
29.26	598.59	
30.72	599.10	
32.91	599.55	TRB
35.30	599.85	
38.94	600.17	
42.30	600.28	
46.10	600.29	
49.72	600.25	
50.43	600.72	RPIN

Figure 3.12 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-12, Riffle	;
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		595.97
Bankfull Cross-Sectional Area (ft ²)		20.40
Bankfull Width (ft)		17.50
Flood Prone Area Elevation (ft)		597.50
Flood Prone Width (ft)		100.00
Bankfull Mean Depth (ft)		1.14
Bankfull Max Depth (ft)		1.53
W/D Ratio		15.35
Entrenchment Ratio		5.71
Bank Height Ratio		1.00

XS-12: Upstream

XS-12: Downstream

Station	Elevation	Notes
0.50	596.62	TLP
1.00	596.57	BLP
4.00	596.55	
7.00	596.57	
10.00	596.48	
13.00	596.26	
14.50	596.20	
16.00	595.97	TLB
17.00	595.49	
17.50	595.15	
19.00	594.47	BLB
22.50	594.58	
25.00	594.44	THW
28.00	594.54	
29.50	594.62	BRB
30.50	595.03	
32.00	595.36	
33.50	595.91	TRB
36.00	596.40	
39.00	596.60	
42.00	596.77	
45.00	597.14	
48.00	597.25	
49.50	597.33	BRP
50.40	597.85	TRP

Figure 3.13 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-13, Pool	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		595.31
Bankfull Cross-Sectiona	Bankfull Cross-Sectional Area (ft ²)	
Bankfull Width (ft)		11.00
Flood Prone Area Elevation (ft)		597.62
Flood Prone Width (ft)		100.00
Bankfull Mean Depth (ft)		1.74
Bankfull Max Depth (ft)		2.31
W/D Ratio		6.32
Entrenchment Ratio		9.09
Bank Height Ratio		1.00

XS-13: Upstream

XS-13: Downstream

Station	Elevation	Notes
0.40	596.87	TLP
0.90	596.62	BLP
4.00	596.56	
7.00	596.58	
10.00	596.52	
13.00	596.49	
16.00	596.30	
19.00	595.85	
21.50	595.44	
23.00	594.95	TLB
24.00	593.75	LEW-WS
24.00	593.24	BLB
26.00	593.00	THW
28.00	593.04	
30.00	593.18	
33.00	593.66	BRB
33.20	593.75	REW-WS
34.00	595.31	TRB
36.00	595.81	
39.00	596.27	
42.00	596.34	
45.00	596.57	
48.00	596.86	
51.00	597.19	BRP
51.40	597.51	TRP

Figure 3.14 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-14, Riffle	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		594.65
Bankfull Cross-Sectional Area (ft ²)		22.30
Bankfull Width (ft)		18.42
Flood Prone Area Elevation (ft)		596.71
Flood Prone Width (ft)		70.00
Bankfull Mean Depth (ft)		1.01
Bankfull Max Depth (ft)		2.06
W/D Ratio		18.24
Entrenchment Ratio		3.80
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	596.30	LPIN
0.13	595.99	
2.29	595.38	
4.78	594.83	
7.93	594.59	
12.02	594.78	
16.65	594.66	
20.35	594.71	
22.18	594.56	TLB
24.38	594.00	
26.53	593.19	
28.22	592.77	
30.21	592.63	
32.10	592.59	THW
34.00	592.87	
35.82	593.58	
38.63	594.35	
40.60	594.65	TRB
43.19	594.69	
47.71	594.69	
53.08	594.77	
55.93	595.14	
58.51	595.71	
59.04	595.97	RPIN

XS-14: Downstream

Figure 3.15 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-15, Pool	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		593.84
Bankfull Cross-Sectional Area (ft ²)		30.00
Bankfull Width (ft)		18.64
Flood Prone Area Elevation (ft)		596.96
Flood Prone Width (ft)		100.00
Bankfull Mean Depth (ft)		1.84
Bankfull Max Depth (ft)		3.12
W/D Ratio		10.13
Entrenchment Ratio		5.37
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	595.40	LPIN
0.19	595.12	
1.38	595.11	
4.95	594.53	
9.28	594.64	
13.30	594.64	
16.08	594.41	
18.11	593.84	TLB
20.29	593.46	
21.94	592.53	
23.57	591.85	LEW
26.11	590.85	
29.23	590.72	THW
31.93	591.54	REW
33.34	593.30	
34.92	594.11	
36.74	594.57	TRB
38.73	594.45	
41.72	594.25	
44.73	594.29	
48.85	594.68	
52.34	594.97	
52.99	595.31	RPIN

XS-15: Downstream

Figure 3.16 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-16, Pool	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		588.16
Bankfull Cross-Sectional Area (ft ²)		45.00
Bankfull Width (ft)		21.29
Flood Prone Area Elevation (ft)		591.36
Flood Prone Width (ft)		60.00
Bankfull Mean Depth (ft)		2.45
Bankfull Max Depth (ft)		3.20
W/D Ratio		8.69
Entrenchment Ratio		2.82
Bank Height Ratio		1.00

XS-16: Downstream

Station	Elevation	Notes
0.00	592.11	LPIN
0.27	591.91	
4.50	592.18	
8.19	591.97	
11.69	591.53	
15.52	590.46	
19.47	589.94	
23.86	588.78	
27.55	589.05	
29.57	588.46	TLB
31.99	588.37	
33.31	587.85	
34.50	586.41	
36.53	586.37	LEW
37.54	585.23	
39.28	585.28	
40.26	585.11	
42.02	584.96	THW
43.57	584.91	
45.35	585.20	
47.09	585.18	
48.87	585.41	
49.56	585.74	REW
50.86	588.16	TRB
57.05	588.70	
57.35	588.30	
63.56	589.67	
65.78	589.74	
69.12	590.55	
71.50	591.76	
73.30	592.24	
72.38	592.53	RPIN

Figure 3.17 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-17, Pool	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		626.54
Bankfull Cross-Sectional Area (ft ²)		5.46
Bankfull Width (ft)		4.90
Flood Prone Area Elevation (ft)		627.92
Flood Prone Width (ft)		20.00
Bankfull Mean Depth (ft)		1.11
Bankfull Max Depth (ft)		1.38
W/D Ratio		4.41
Entrenchment Ratio		4.08
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	629.03	TLP
0.40	628.46	BLP
3.00	628.13	
6.00	627.48	
9.00	627.14	
11.90	626.54	TLB
12.70	625.27	BLB
14.00	625.16	THW
16.00	625.22	BRB
16.80	626.54	TRB
20.00	627.32	
23.00	627.65	
26.00	627.81	
29.60	627.96	BRP
30.20	628.46	TRP

XS-17: Downstream

Figure 3.18 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-18, Riffle	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		626.62
Bankfull Cross-Sectional Area (ft ²)		5.42
Bankfull Width (ft)		6.30
Flood Prone Area Elevation (ft)		627.71
Flood Prone Width (ft)		30.00
Bankfull Mean Depth (ft)		0.54
Bankfull Max Depth (ft)		1.09
W/D Ratio		11.67
Entrenchment Ratio		4.76
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	628.23	TLP
0.40	627.87	BLP
3.10	627.40	
6.10	626.86	
9.10	626.45	
11.60	626.62	TLB
13.10	625.51	BLB
14.60	625.53	THW
16.40	625.60	BRB
17.90	626.68	TRB
21.10	626.92	
24.10	627.09	
27.10	627.20	
29.30	627.27	BRP
29.50	627.60	TRP

XS-18: Upstream

XS-18: Downstream

Figure 3.19 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-19, Riffle	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		616.16
Bankfull Cross-Sectional Area (ft ²)		4.15
Bankfull Width (ft)		8.72
Flood Prone Area Elevation (ft)		616.76
Flood Prone Width (ft)		30.00
Bankfull Mean Depth (ft)		0.27
Bankfull Max Depth (ft)		0.60
W/D Ratio		32.29
Entrenchment Ratio		3.44
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	617.31	LPIN
0.34	616.81	
3.19	616.68	
7.34	616.95	
11.44	616.72	
13.91	616.43	
16.70	616.12	
18.42	616.16	TLB
20.20	615.54	
21.52	615.76	
22.88	615.56	THW
24.06	615.65	
24.48	615.25	
25.32	615.66	
27.14	616.43	TRB
30.54	616.05	
34.34	616.11	
37.47	616.54	
39.83	616.67	
40.35	617.15	RPIN

XS-19: Upstream

XS-19: Downstream

Figure 3.20 Cross Section Data

Project Name	Heath Dairy		
DMS Project Number	170		
Cross-Section ID	XS-20, Riffle	;	
Survey Date	9/2015		
SUMMA	SUMMARY DATA		
Bankfull Elevation (ft)		608.78	
Bankfull Cross-Sectional Area (ft ²)		4.37	
Bankfull Width (ft)		12.01	
Flood Prone Area Elevation (ft)		609.44	
Flood Prone Width (ft)		30.00	
Bankfull Mean Depth (ft)		0.44	
Bankfull Max Depth (ft)		0.66	
W/D Ratio		27.29	
Entrenchment Ratio		2.50	
Bank Height Ratio		1.00	

XS-20: Upstream

XS-20: Downstream

Station	Elevation	Notes
0.00	609.79	LPIN
8.46	609.75	
10.68	609.70	
12.57	608.78	TLB
14.25	608.59	
15.45	608.83	
16.25	608.22	
17.23	608.15	
18.69	608.03	
19.87	608.12	THW
21.25	608.05	
22.03	608.44	
22.86	608.88	
23.63	609.25	
24.57	609.03	TRB
26.03	608.98	
29.44	608.91	
33.29	608.95	
36.69	608.79	
37.55	608.95	
39.97	609.40	
40.42	609.72	RPIN

Figure 3.21 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-21, Pool	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		608.23
Bankfull Cross-Section	al Area (ft ²)	7.61
Bankfull Width (ft)		6.75
Flood Prone Area Elevation (ft)		609.79
Flood Prone Width (ft)		40.00
Bankfull Mean Depth (f	t)	0.97
Bankfull Max Depth (ft)		1.56
W/D Ratio		6.96
Entrenchment Ratio		5.92
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	609.63	LPIN
0.16	609.27	
2.72	609.43	
5.99	609.08	
9.47	609.17	
13.09	609.04	
14.53	608.47	
15.46	608.79	
16.13	608.30	
17.14	607.18	
18.21	606.65	
19.32	606.67	THW
20.52	606.87	
21.04	607.24	
22.33	607.57	
23.90	608.23	TRB
26.44	608.27	
29.43	608.53	
32.44	608.32	
35.76	608.53	
37.84	608.95	
40.21	608.86	
40.52	609.50	RPIN

XS-21: Upstream

XS-21: Downstream

Figure 3.22 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-22, Riffle	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		613.89
Bankfull Cross-Sectional Area (ft ²)		8.45
Bankfull Width (ft)		7.15
Flood Prone Area Elevation (ft)		614.72
Flood Prone Width (ft)		75.00
Bankfull Mean Depth (ft)		0.46
Bankfull Max Depth (ft)		0.83
W/D Ratio		15.54
Entrenchment Ratio		10.49
Bank Height Ratio		1.00

Elevation

613.99

614.08

613.30

613.19

612.92 613.33

613.97 613.87 613.75

613.36

613.50

613.43

613.64 RPIN

614.37 LPIN 614.23

613.97 TLB

613.06 THW

613.89 TRB

Notes

Station

0.00

0.23

3.65

12.69

16.70

17.41

18.62

19.98

21.65

22.72 23.85

26.49

27.67 29.53 31.29

33.63

36.23

38.74

XS-22: Upstream

XS-22: Downstream

Figure 3.23 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-23, Pool	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		594.25
Bankfull Cross-Sectional Area (ft ²)		42.10
Bankfull Width (ft)		17.18
Flood Prone Area Elevation (ft)		598.82
Flood Prone Width (ft)		200.00
Bankfull Mean Depth (ft)		2.88
Bankfull Max Depth (ft)		4.57
W/D Ratio		5.96
Entrenchment Ratio		11.64
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	596.16	LPIN
0.35	595.83	
2.78	595.73	
7.01	595.56	
10.47	595.48	
14.24	594.94	
16.39	594.85	
19.57	594.25	TLB
20.82	592.69	
22.00	591.81	
23.24	591.27	
23.48	590.80	LEW
25.30	590.42	
26.58	589.82	
27.52	590.03	
28.65	589.68	THW
29.95	589.82	
31.10	592.12	
32.50	592.80	
33.63	593.30	
34.61	595.02	
36.74	595.24	TRB
38.96	595.44	
41.80	595.63	
45.72	595.76	
49.34	595.80	
54.46	595.56	
55.51	595.76	RPIN

XS-23: Upstream

XS-23: Downstream

Figure 3.24 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-24, Riffle	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		594.83
Bankfull Cross-Sectional Area (ft ²)		29.40
Bankfull Width (ft)		22.41
Flood Prone Area Elevation (ft)		596.81
Flood Prone Width (ft)		200.00
Bankfull Mean Depth (ft)		1.33
Bankfull Max Depth (ft)		1.98
W/D Ratio		16.85
Entrenchment Ratio		8.92
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	596.22	LPIN
0.12	596.07	
2.88	595.97	
6.53	595.51	
10.76	595.02	
13.77	594.83	TLB
17.26	593.50	
19.01	593.23	
20.29	593.39	
21.74	593.16	
23.81	592.91	
26.21	592.85	THW
26.95	592.98	
30.59	592.78	
31.44	593.72	
33.77	594.50	
36.18	594.88	TRB
38.86	595.21	
41.97	595.34	
45.68	595.61	
49.46	595.83	
51.63	595.97	
51.92	596.31	RPIN

XS-24: Upstream

XS-24: Downstream

Figure 3.25 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-25, Riffle	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		593.34
Bankfull Cross-Sectional Area (ft ²)		26.00
Bankfull Width (ft)		20.68
Flood Prone Area Elevation (ft)		595.08
Flood Prone Width (ft)		100.00
Bankfull Mean Depth (ft)		1.35
Bankfull Max Depth (ft)		1.74
W/D Ratio		15.32
Entrenchment Ratio		4.84
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	594.78	LPIN
0.43	594.63	
3.02	594.56	
7.13	594.24	
10.42	593.96	
13.80	593.56	
15.33	593.34	TLB
17.07	592.46	
18.52	591.90	
20.09	591.50	
21.97	591.21	
23.60	591.60	THW
25.60	591.58	
27.13	591.67	
29.19	591.57	
30.63	592.19	
32.37	592.65	
34.12	593.21	
36.01	593.66	TRB
39.69	593.92	
44.62	593.95	
50.42	594.23	
50.86	594.46	RPIN

XS-25: Upstream

XS-25: Downstream

Figure 3.26 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-26, Pool	
Survey Date	9/2015	
SUMMA	RY DATA	
Bankfull Elevation (ft)		596.27
Bankfull Cross-Sectional Area (ft ²)		6.32
Bankfull Width (ft)		11.80
Flood Prone Area Elevation (ft)		597.58
Flood Prone Width (ft)		50.00
Bankfull Mean Depth (ft)		0.68
Bankfull Max Depth (ft)		1.31
W/D Ratio		17.36
Entrenchment Ratio		4.24
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	596.55	LPIN
0.18	596.42	
3.82	596.73	
6.63	596.72	
9.33	596.52	
11.44	596.94	TLB
13.25	596.67	
14.64	595.95	
16.04	596.03	
17.42	595.38	
19.11	594.96	THW
20.44	594.99	
21.21	595.59	
23.24	596.27	TRB
26.11	596.42	
30.40	596.79	
34.27	597.28	
39.94	597.93	RPIN

XS-26: Upstream

Figure 3.27 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-27, Riffle	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		596.26
Bankfull Cross-Section	al Area (ft ²)	6.15
Bankfull Width (ft)		10.94
Flood Prone Area Elevat	ion (ft)	596.94
Flood Prone Width (ft)		50.00
Bankfull Mean Depth (ft	:)	0.30
Bankfull Max Depth (ft)		0.68
W/D Ratio		36.48
Entrenchment Ratio		4.57
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	596.33	LPIN
0.02	596.19	
1.95	596.19	
6.03	596.27	
9.55	596.12	
11.55	596.35	TLB
13.23	596.04	
15.52	595.39	
17.11	595.58	THW
18.91	595.33	
20.90	595.94	
22.49	596.26	TRB
24.62	596.31	
25.95	596.37	
31.94	596.62	
36.15	596.74	
39.71	597.28	
39.94	597.61	RPIN

XS-27: Upstream

XS-27: Downstream

Figure 3.28 Cross Section Data

Project Name	Heath Dairy	
DMS Project Number	170	
Cross-Section ID	XS-28,Riffle	
Survey Date	9/2015	
SUMMA	RYDATA	
Bankfull Elevation (ft)		594.31
Bankfull Cross-Section	al Area (ft ²)	7.38
Bankfull Width (ft)		12.68
Flood Prone Area Elevat	ion (ft)	595.33
Flood Prone Width (ft)		50.00
Bankfull Mean Depth (f	t)	0.35
Bankfull Max Depth (ft)		1.01
W/D Ratio		36.24
Entrenchment Ratio		3.94
Bank Height Ratio		1.00

Station	Elevation	Notes
0.00	595.71	LPIN
0.57	595.64	
4.08	595.44	
9.85	594.82	
13.02	594.74	
16.30	594.60	TLB
18.66	594.28	
19.99	593.91	
21.30	593.68	
22.68	593.30	THW
23.95	593.22	
25.17	593.51	
26.76	593.63	
28.98	594.31	TRB
32.29	594.20	
36.71	594.19	
40.10	594.34	
40.64	594.60	RPIN

XS-28: Upstream

XS-28: Downstream

Figure 4.4. Longitudinal Profile

Figure 5.1. Pebble Counts

	Project Na	ame: Heath	Dairy			
	Reach	Back Cre	ek			
	Feature	e: Pool (XS	1)			
		<i></i>	M	72-(9/2015)		
Description		Size	Total #	Item	Cum	
an ca	Material	(mm)		%	%	
Silt/Clay	silt/clay	0.062	23	23%	23%	
	very fine sand	0.125	0	0%	23%	
	fine sand	0.250	0	0%	23%	
Sand	medium sand	0.50	0	0%	23%	
	coarse sand	1.00	0	0%	23%	
	very coarse sand	2.0	0	0%	23%	
	very fine gravel	4.0	0	0%	23%	
	fine gravel	5.7	0	0%	23%	
	fine gravel	8.0	0	0%	23%	
Gravel	medium gravel	11.3	10	10%	33%	
	medium gravel	16.0	23	23%	56%	
	course gravel	22.3	0	0%	56%	
	course gravel	32.0	10	10%	66%	
	very coarse gravel	45	10	10%	76%	
	very coarse gravel	64	10	10%	86%	
Cobble	small cobble	90	10	10%	96%	
	medium cobble	128	2	2%	98%	
	large cobble	180	0	0%	98%	
	very large cobble	256	0	0%	98%	
	small boulder	362	0	0%	98%	
Boulder	small boulder	512	2	2%	100%	
	medium boulder	1024	0	0%	100%	
	large boulder	2048	0	0%	100%	
Bedrock	bedrock	40096	0	0%	100%	
TOTAL %	of whole count	-	100	100%	100%	
					•	
Sum	mary Data					
D50	16.0					
D84	64.0					
D 0 F	00.0					

	Project Na	me: Heath	Dairy		
	Reach	Back Cree	ek		
	Feature	: Riffle (XS	2)		
		M		2-(9/2015	5)
Description	Matadal	Size	Total #	Item	Cum
Sil4/Class	Material	(mm)	21	% 0	%0
Sill/Clay	silt/clay	0.062	31	51%	31%
	very fine sand	0.125	0	0%	31%
Sand	fine sand	0.250	0	0%	31%
	mediumsand	0.50	0	0%	31%
	coarse sand	1.00	0	0%	31%
	very coarse sand	2.0	0	0%	31%
	very fine gravel	4.0	0	0%	31%
Gravel	fine gravel	5.7	0	0%	31%
	fine gravel	8.0	3	3%	34%
	medium gravel	11.3	11	11%	45%
	medium gravel	16.0	11	11%	56%
	course gravel	22.3	11	11%	67%
	course gravel	32.0	11	11%	78%
	verv coarse gravel	45	11	11%	89%
	very coarse gravel	64	11	11%	100%
Cobble	small cobble	90	0	0%	100%
	medium cobble	128	0	0%	100%
	large cobble	180	0	0%	100%
	verv large cobble	256	0	0%	100%
	small boulder	362	0	0%	100%
	small boulder	512	0	0%	100%
Boulder	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
TOTAL % of whole count		-	100	100%	100%
	of whole could	-	100	10070	10070
Sum	mary Data				
D50	16.0				
D84	45.0				
D95	64.0				

Figure 5.3. Pebble Counts

		Project Name	: Heath Dairy		
		Reach: Ba	ick Creek		
		reature: K	inte (AS 5)	MV2-(9/2015)	
Descriptio		Size (mm)	Total #	Itom 9/	Cum 9/
n	Material	Size (IIIII)	10tal#	Item 76	Cull 76
Silt/Clay	silt/clay	0.062	27	27%	27%
	very fine sand	0.125	0	0%	27%
Sand	fine sand	0.250	0	0%	27%
	medium s and	0.50	0	0%	27%
	coarse sand	1.00	0	0%	27%
	ery coarse san	2.0	0	0%	27%
	very fine grave	4.0	5	5%	32%
Gravel	fine gravel	5.7	0	0%	32%
	fine gravel	8.0	4	4%	36%
	medium gravel	11.3	11	11%	47%
	medium gravel	16.0	0	0%	47%
	course gravel	22.3	16	16%	63%
	course gravel	32.0	11	11%	74%
	ery coarse grav	45	11	11%	85%
	ery coarse grav	64	0	0%	85%
Cobble	small cobble	90	11	11%	96%
	medium cobble	128	0	0%	96%
Conne	large cobble	180	0	0%	96%
	ery large cobbl	256	0	0%	96%
	small boulder	362	4	4%	100%
Douldon	small boulder	512	0	0%	100%
Douider	nedium boulde	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % o	f whole cour	-	100	100%	100%
Summe	ny Doto				
D50	22.0				
D30	45.0				
D95	90.0				

Figure 5.4. Pebble Counts

		Project Name	: Heath Dairy		
		Reach: Ba	ack Creek		
		Feature: I	Pool (XS 4)	3 5 10 (0 (0 (1 5)	
Description	T			MY2-(9/2015)	
n n	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	50	50%	50%
	very fine sand	0.125	0	0%	50%
	fine sand	0.250	0	0%	50%
Sand	medium sand	0.50	0	0%	50%
	coarse sand	1.00	0	0%	50%
	ery coarse san	2.0	0	0%	50%
	very fine grave	4.0	10	10%	60%
	fine gravel	5.7	0	0%	60%
Gravel	fine gravel	8.0	0	0%	60%
	medium gravel	11.3	0	0%	60%
	medium gravel	16.0	10	10%	70%
	course gravel	22.3	10	10%	80%
	course gravel	32.0	0	0%	80%
	ery coarse grav	45	10	10%	90%
	ery coarse grav	64	0	0%	90%
Cobble	small cobble	90	10	10%	100%
	mediumcobble	128	0	0%	100%
	large cobble	180	0	0%	100%
	ery large cobbl	256	0	0%	100%
	small boulder	362	0	0%	100%
Douldon	small boulder	512	0	0%	100%
Domaci	nedium boulde	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
COTAL % o	of whole cour	-	100	100%	100%
		1			
Summ	ary Data				
D50	0.6				
D84	75.0				
		I			

		Feature: R	iffle (XS 6)	MV2 (0/2015)	
Descriptio	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clav	silt/clay	0.062	60	60%	60%
v	very fine sand	0.125	0	0%	60%
Sand	fine sand	0.250	3	3%	63%
	medium sand	0.50	0	0%	63%
	coarse sand	1.00	0	0%	63%
	ery coarse san	2.0	0	0%	63%
	very fine grave	4.0	0	0%	63%
Gravel	fine gravel	5.7	0	0%	63%
	fine gravel	8.0	5	5%	68%
	medium gravel	11.3	5	5%	73%
	medium gravel	16.0	5	5%	78%
	course gravel	22.3	11	11%	89%
	course gravel	32.0	0	0%	89%
	ery coarse grav	45	11	11%	100%
	ery coarse grav	64	0	0%	100%
Cabble	small cobble	90	0	0%	100%
	medium cobble	128	0	0%	100%
CODDIC	large cobble	180	0	0%	100%
	ery large cobbl	256	0	0%	100%
	small boulder	362	0	0%	100%
Rouldor	small boulder	512	0	0%	100%
Doulder	nedium boulde	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % o	f whole cour	-	100	100%	100%
Summa	ary Data				
D50	0.1				
D84	22.0				
D95	45.0				

Figure 5.5. Pebble Counts

		Reach: Ba	eck Creek			
		Feature: R	iffle (XS 8)			
				MY2-(9/2015)		
Descriptio	Mate rial	Size (mm)	Total #	Item %	Cum %	
Silt/Clay	silt/clay	0.062	48	48%	48%	
	very fine sand	0.125	0	0%	48%	
	fine sand	0.250	0	0%	48%	
Sand	medium sand	0.50	0	0%	48%	
	coarse sand	1.00	0	0%	48%	
	ery coarse san	2.0	0	0%	48%	
	very fine grave	4.0	0	0%	48%	-
	fine gravel	5.7	4	4%	52%	4
	fine gravel	8.0	4	4%	56%	4
C1	medium gravel	11.3	4	4%	60%	- 1
Gravel	medium gravel	16.0	0	0%	60%	- 1
	course gravel	22.3	0	0%	60%	- 1
	course gravel	32.0	10	10%	/0%	4
	ery coarse grav	43	10	10%	80% 1000/	4
	ery coarse grav	04	20	20%	100%	{
	small cobble	90	0	0%	100%	- 1
Cobble	mediumcobble	128	0	0%	100%	4 1
	large cobble	180	0	0%	100%	
	ery large cobbl	256	0	0%	100%	
	small boulder	362	0	0%	100%	
D 11	small boulder	512	0	0%	100%	1
Boulder	nedium boulder	1024	0	0%	100%	1
	large boulder	2048	0	0%	100%	1
Bedrock	bedrock	40096	0	0%	100%	1
OTAL %	of whole cour	-	100	100%	100%	1

Figure 5.6. Pebble Counts

		Reach: Ba	ack Creek		
		Feature: 1	Pool (XS 9)		
	1			MY2-(9/2015)	
Descriptio n	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	71	71%	71%
	very fine sand	0.125	0	0%	71%
Sand	fine sand	0.250	0	0%	71%
	medium sand	0.50	0	0%	71%
	coarse sand	1.00	0	0%	71%
	ery coarse san	2.0	0	0%	71%
	very fine grave	4.0	0	0%	71%
Gravel	fine gravel	5.7	0	0%	71%
	fine gravel	8.0	0	0%	71%
	medium gravel	11.3	0	0%	71%
	medium gravel	16.0	0	0%	71%
	course gravel	22.3	0	0%	71%
	course gravel	32.0	11	11%	82%
	ery coarse grav	45	6	6%	88%
	ery coarse grav	64	6	6%	94%
	small cobble	90	6	6%	100%
<i>a</i>	medium cobble	128	0	0%	100%
Cobble	large cobble	180	0	0%	100%
000020	ery large cobbl	256	0	0%	100%
	small boulder	362	0	0%	100%
Douldon	small boulder	512	0	0%	100%
Douider	nedium boulde	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % o	of whole cour	-	100	100%	100%
Summ	ary Data				
D50	0.6				
D84	42.0				
D93	05.0				

Figure 5.7. Pebble Counts

		Feature: Ri	ffle (XS 10)	MV2 (0/2015)	
Descriptio		Size (mm)	Total #	Item %	Cum %
n	Material	2		/-	
Silt/Clay	silt/clay	0.062	42	42%	42%
	very fine sand	0.125	0	0%	42%
	fine sand	0.250	0	0%	42%
Sand	medium sand	0.50	0	0%	42%
	coarse sand	1.00	0	0%	42%
	ery coarse san	2.0	0	0%	42%
	very fine grave	4.0	0	0%	42%
Gravel	fine gravel	5.7	2	2%	44%
	fine gravel	8.0	3	3%	47%
	medium gravel	11.3	5	5%	52%
	medium gravel	16.0	10	10%	62%
	course gravel	22.3	0	0%	62%
	course gravel	32.0	12	12%	74%
	ery coarse grav	45	12	12%	86%
	ery coarse grav	64	14	14%	100%
	small cobble	90	0	0%	100%
G 111	medium cobble	128	0	0%	100%
Coddle	large cobble	180	0	0%	100%
	ery large cobbl	256	0	0%	100%
	small boulder	362	0	0%	100%
в 11	small boulder	512	0	0%	100%
Boulder	nedium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % (of whole cour	-	100	100%	100%
Summ	ary Data				
D50	9.0				
D84	42.0				
D95	60.0				

Figure 5.8. Pebble Counts

Figure 5.9. Pebble Counts

Project Name: Heath Dairy					
		Reach: Ba	ack Creek		
		Feature: R	iffle (XS 12)	MV2 (0/2015)	\
Descriptio	Matarial	Size (mm)	Total #	Item %	Cum %
Il Silt/Cloy	Material	0.062	40	4094	4004
Sitt/Ciay	silt/clay	0.002	40	40%	40%
Sand	very fine sand	0.125	0	0%	40%
	Tine sand	0.230	0	0%	40%
Sanu	mediumsand	1.00	0	0%	40%
	coarse sand	1.00	0	0%	40%
	ery coarse san	2.0	0	0%	40%
	very fine grave	4.0	0	0%	40%
	tine gravel	5.7	0	0%	40%
	fine gravel	8.0	0	0%	40%
~ -	medium gravel	11.3	10	10%	50%
Gravel	medium gravel	16.0	5	5%	55%
	course gravel	22.3	5	5%	60%
	course gravel	32.0	20	20%	80%
	ery coarse grav	45	15	15%	95%
	ery coarse grav	64	5	5%	100%
	small cobble	90	0	0%	100%
Cobble	medium cobble	128	0	0%	100%
	large cobble	180	0	0%	100%
	ery large cobbl	256	0	0%	100%
	small boulder	362	0	0%	100%
Boulder	small boulder	512	0	0%	100%
	nedium boulde	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % (of whole cour	-	100	100%	100%
Sum	ary Doto				
D50	11 0				
D30	35.0				
D95	45.0				

Figure 5.10. Pebble Counts

		Project Name	: Heath Dairy		
		Feature: Di	iffle (XS 14)		
		Feature. K	ine (AB 14)	MY2-(9/2015)	
Descriptio n	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clav	0.062	18	18%	18%
·	very fine sand	0.125	0	0%	18%
	fine sand	0.250	0	0%	18%
Sand	medium sand	0.50	10	10%	28%
	coarse sand	1.00	0	0%	28%
	ery coarse san	2.0	0	0%	28%
	very fine grave	4.0	10	10%	38%
	fine gravel	5.7	0	0%	38%
	fine gravel	8.0	12	12%	50%
	medium gravel	11.3	15	15%	65%
Gravel	medium gravel	16.0	10	10%	75%
	course gravel	22.3	25	25%	100%
	course gravel	32.0	0	0%	100%
	ery coarse grav	45	0	0%	100%
	ery coarse grav	64	0	0%	100%
	small cobble	90	0	0%	100%
Cabbla	medium cobble	128	0	0%	100%
CODDIE	large cobble	180	0	0%	100%
	ery large cobbl	256	0	0%	100%
	small boulder	362	0	0%	100%
Bouldar	small boulder	512	0	0%	100%
Domaci	nedium boulde	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % o	of whole cour	-	100	100%	100%
Summa D50	ary Data				
D30	8.0				
D84	18.0				

Figure 5.11. Pebble Counts

		Feature: Ri	iffle (XS 16)		
				MY2-(9/2015)	
Descriptio n	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	35	35%	35%
	very fine sand	0.125	9	9%	44%
Sand	fine sand	0.250	0	0%	44%
	medium sand	0.50	0	0%	44%
	coarse sand	1.00	0	0%	44%
	ery coarse san	2.0	0	0%	44%
	very fine grave	4.0	9	9%	53%
	fine gravel	5.7	9	9%	62%
Gravel	fine gravel	8.0	4	4%	66%
	medium gravel	11.3	5	5%	71%
	medium gravel	16.0	17	17%	88%
	course gravel	22.3	10	10%	98%
	course gravel	32.0	0	0%	98%
	ery coarse grav	45	0	0%	98%
	ery coarse grav	64	0	0%	98%
	small cobble	90	0	0%	98%
Cable	medium cobble	128	0	0%	98%
Coddle	large cobble	180	0	0%	98%
	ery large cobbl	256	0	0%	98%
	small boulder	362	0	0%	98%
D	small boulder	512	0	0%	98%
Bouider	nedium boulder	1024	0	0%	98%
	large boulder	2048	2	2%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % of whole cour		-	100	100%	100%
				•	
Summa	ary Data				
D50	3.0				
D84	15.0				
D95	21.0				

Figure 5.12. Pebble Counts

		Project Name	: Heath Dairy		
	Kea	Eesture: R	nch to Back () iffle (XS 19)	геек	
		reature. R	ine (25 17)	MY2-(9/2015)	
Descriptio n	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	0	0%	0%
	very fine sand	0.125	0	0%	0%
Sand	fine sand	0.250	0	0%	0%
	medium sand	0.50	0	0%	0%
	coarse sand	1.00	0	0%	0%
	ery coarse san	2.0	0	0%	0%
	very fine grave	4.0	0	0%	0%
	fine gravel	5.7	0	0%	0%
	fine gravel	8.0	0	0%	0%
	medium gravel	11.3	0	0%	0%
Gravel	medium gravel	16.0	0	0%	0%
	course gravel	22.3	0	0%	0%
	course gravel	32.0	10	10%	10%
	ery coarse grav	45	10	10%	20%
	ery coarse grav	64	10	10%	30%
	small cobble	90	30	30%	60%
6 111	medium cobble	128	37	37%	97%
Cobble	large cobble	180	0	0%	97%
	erv large cobbl	256	0	0%	97%
	small boulder	362	0	0%	97%
.	small boulder	512	0	0%	97%
Boulder	nedium boulder	1024	0	0%	97%
	large boulder	2048	3	3%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % o	of whole cour	-	100	100%	100%
Summa	ary Data				
D50	80.0				
D84	104.0				
D95	120.0				

Figure 5.13. Pebble Counts

	Rea	Project Name	: Heath Dairy Joh to Back Ci	reek	
		Feature: Ri	ffle (XS 20)		
			· · · ·	MY2-(9/2015)	
Descriptio n	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clav	0.062	19	19%	19%
v	verv fine sand	0.125	0	0%	19%
	fine sand	0.250	0	0%	19%
Sand	medium sand	0.50	0	0%	19%
	coarse sand	1.00	0	0%	19%
	ery coarse san	2.0	0	0%	19%
	very fine grave	4.0	0	0%	19%
	fine gravel	5.7	0	0%	19%
Gravel	fine gravel	8.0	0	0%	19%
	medium gravel	11.3	0	0%	19%
	medium gravel	16.0	0	0%	19%
	course gravel	22.3	19	19%	38%
	course gravel	32.0	19	19%	57%
	ery coarse grav	45	19	19%	76%
	ery coarse grav	64	10	10%	86%
	small cobble	90	10	10%	96%
C. I.I.	medium cobble	128	0	0%	96%
Cobble	large cobble	180	0	0%	96%
	ery large cobbl	256	0	0%	96%
	small boulder	362	0	0%	96%
D. 11.	small boulder	512	0	0%	96%
Boulder	nedium boulde	1024	0	0%	96%
	large boulder	2048	4	4%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % o	of whole cour	-	100	100%	100%
Summa	ary Data				
D50	30.0				
D84	58.0				
093	88.0				

Figure 5.14. Pebble Counts

Gravel	Material silt/clay ery fine sand fine sand medium sand coarse sand ry coarse sand ry coarse sand ry fine gravel fine gravel edium gravel edium gravel ourse gravel ourse gravel	Size (mm) 0.062 0.125 0.250 1.00 2.0 4.0 5.7 8.0 11.3 16.0 22.3	Total # 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Item % 0% 51% 0%	Cum % 0% 51% 51% 51% 51% 51% 51% 51% 51% 51%
n Silt/Clay Sand n c er Gravel m	Material silt/clay ery fine sand fine sand coarse sand cy coarse sand ry fine gravel fine gravel edium gravel edium gravel ourse gravel ourse gravel	Size (mm) 0.062 0.125 0.250 0.50 1.00 2.0 4.0 5.7 8.0 11.3 16.0 22.3	Total # 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Item % 0% 51% 0%	Cum % 0% 51% 51% 51% 51% 51% 51% 51% 51%
Silt/Clay vo Sand n Gravel m Gravel m	silt/clay ery fine sand fine sand nedium sand coarse sand ry coarse san ry fine gravel fine gravel edium gravel edium gravel ourse gravel ourse gravel	0.062 0.125 0.250 1.00 2.0 4.0 5.7 8.0 11.3 16.0 22.3	0 50 0 0 0 0 0 0 0 0 0 0 0 0	0% 51% 0%	0% 51% 51% 51% 51% 51% 51% 51% 51% 51%
Sand n Gravel m Gravel m C C C C C C C C C C C C C	ery fine sand fine sand nedium sand coarse sand ry coarse san ry fine gravel fine gravel edium gravel edium gravel ourse gravel ourse gravel	0.125 0.250 1.00 2.0 4.0 5.7 8.0 11.3 16.0 22.3	50 0 0 0 0 0 0 0 0 0 0 0 0	51% 0% 0% 0% 0% 0% 0% 0%	51% 51% 51% 51% 51% 51% 51% 51%
Sand n	fine sand medium sand coarse sand ry coarse san ry fine gravel fine gravel edium gravel edium gravel ourse gravel ourse gravel	0.250 0.50 1.00 2.0 4.0 5.7 8.0 11.3 16.0 22.3	0 0 0 0 0 0 0 0 0	0% 0% 0% 0% 0% 0% 0%	51% 51% 51% 51% 51% 51% 51%
Sand n	nedium sand coarse sand ry coarse san ry fine grave fine gravel edium gravel edium gravel ourse gravel ourse gravel	0.50 1.00 2.0 4.0 5.7 8.0 11.3 16.0 22.3	0 0 0 0 0 0 0 0 0	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	51% 51% 51% 51% 51% 51%
Gravel m	coarse sand cy coarse san rry fine grave fine gravel fine gravel edium gravel ourse gravel ourse gravel	1.00 2.0 4.0 5.7 8.0 11.3 16.0 22.3	0 0 0 0 0 0 0	0% 0% 0% 0% 0%	51% 51% 51% 51% 51% 51%
Gravel m	y coarse san ry fine grave fine gravel fine gravel edium gravel edium gravel ourse gravel ourse gravel	2.0 4.0 5.7 8.0 11.3 16.0 22.3	0 0 0 0 0 0	0% 0% 0% 0% 0%	51% 51% 51% 51% 51%
Gravel m co cr	ry fine grave fine gravel fine gravel edium gravel edium gravel ourse gravel ourse gravel	4.0 5.7 8.0 11.3 16.0 22.3	0 0 0 0 0	0% 0% 0% 0%	51% 51% 51% 51%
Gravel m	fine gravel fine gravel edium gravel edium gravel ourse gravel ourse gravel	5.7 8.0 11.3 16.0 22.3	0 0 0 0	0% 0% 0%	51% 51% 51%
Gravel m	fine gravel edium gravel edium gravel ourse gravel ourse gravel	8.0 11.3 16.0 22.3	0 0 0	0% 0% 0%	51% 51%
Gravel m	edium gravel edium gravel ourse gravel ourse gravel	11.3 16.0 22.3	0	0% 0%	51%
Gravel m	edium gravel ourse gravel ourse gravel	16.0 22.3	0	0%	
	ourse gravel ourse gravel	22.3			51%
	ourse gravel		0	0%	51%
ery		32.0	11	11%	61%
	y coarse grav	45	16	16%	77%
ery	y coarse grav	64	20	20%	97%
s	small cobble	90	3	3%	100%
Cabble	edium cobble	128	0	0%	100%
	arge cobble	180	0	0%	100%
er	ry large cobbl	256	0	0%	100%
s	mall boulder	362	0	0%	100%
Rouldon SI	mall boulder	512	0	0%	100%
ne	edium boulde	1024	0	0%	100%
la	arge boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % of v	whole cour	-	100	100%	100%
Summary	y Data				
D50	0.1				
D84	50.0				

MY2-(9/2015)

MY1-(9/2014)

Particle Size (mm)

Figure 5.15. Pebble Counts

Descriptio					
Descriptio n	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	5	5%	5%
	very fine sand	0.125	0	0%	5%
	fine sand	0.250	0	0%	5%
Sand	medium sand	0.50	0	0%	5%
	coarse sand	1.00	0	0%	5%
	ery coarse san	2.0	0	0%	5%
	very fine grave	4.0	0	0%	5%
	fine gravel	5.7	0	0%	5%
	fine gravel	8.0	0	0%	5%
	medium gravel	11.3	0	0%	5%
Gravel	medium gravel	16.0	0	0%	5%
	course gravel	22.3	0	0%	5%
	course gravel	32.0	0	0%	5%
	ery coarse grav	45	0	0%	5%
	ery coarse grav	64	0	0%	5%
	small cobble	90	5	5%	10%
Cable	medium cobble	128	20	20%	30%
Cobble	large cobble	180	20	20%	50%
	ery large cobbl	256	47	47%	97%
	small boulder	362	0	0%	97%
Douldon	small boulder	512	0	0%	97%
Douider	nedium boulde	1024	0	0%	97%
	large boulder	2048	3	3%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % o	f whole cour	-	100	100%	100%

Figure 5.16. Pebble Counts

	Rea	Project Name	: Heath Dairy	rook	
	Rea	Feature: Ri	iffle (XS 24)	Ittk	
				MY2-(9/2015)	
Descriptio	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clav	silt/clay	0.062	25	25%	25%
~y	very fine sand	0.125	0	0%	25%
Sand	fine sand	0.250	0	0%	25%
	medium sand	0.50	0	0%	25%
	coarse sand	1.00	1	1%	26%
	erv coarse san	2.0	0	0%	26%
	very fine grave	4.0	0	0%	26%
	fine gravel	5.7	1	1%	27%
	fine gravel	8.0	9	9%	36%
	medium gravel	11.3	7	7%	43%
Gravel	medium gravel	16.0	25	25%	68%
	course gravel	22.3	9	9%	77%
	course gravel	32.0	12	12%	89%
	ery coarse grav	45	7	7%	96%
	ery coarse grav	64	2	2%	98%
	small cobble	90	0	0%	98%
C 111	medium cobble	128	0	0%	98%
Cobble	large cobble	180	0	0%	98%
	ery large cobbl	256	0	0%	98%
	small boulder	362	2	2%	100%
D 11	small boulder	512	0	0%	100%
Boulder	nedium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % o	of whole cour	-	100	100%	100%
					•
Summ	ary Data				
D50	14.0				
D84	30.0				
095	42.0	l			

Figure 5.17. Pebble Counts

		Project Name	: Heath Dairy		
	Rea	ch: North Bra	nch to Back C	reek	
		Feature: Ri	ffle (XS 25)	MV2 (0/2015)	
Decorintio				M112-(9/2015)	
n	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	4	4%	4%
	very fine sand	0.125	0	0%	4%
	fine sand	0.250	0	0%	4%
Sand	medium sand	0.50	0	0%	4%
	coarse sand	1.00	0	0%	4%
	ery coarse san	2.0	0	0%	4%
	very fine grave	4.0	0	0%	4%
	fine gravel	5.7	0	0%	4%
	fine gravel	8.0	8	8%	12%
	medium gravel	11.3	12	12%	24%
Gravel	medium gravel	16.0	19	19%	43%
	course gravel	22.3	17	17%	60%
	course gravel	32.0	12	12%	72%
	ery coarse grav	45	10	10%	82%
	ery coarse grav	64	7	7%	89%
	small cobble	90	7	7%	96%
C.III.	mediumcobble	128	0	0%	96%
Copple	large cobble	180	0	0%	96%
	ery large cobbl	256	0	0%	96%
	small boulder	362	1	1%	97%
N 11	small boulder	512	0	0%	97%
Boulder	nedium boulde	1024	3	3%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
)TAL % c	of whole cour	-	100	100%	100%
				1	
Summ	ary Data				
D50	18.0				
D84	50.0				
D95	85.0	l			

Figure 5.18. Pebble Counts

		reature. 1	001 (205 20)	MY2-(9/2015)	
Descriptio n	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	30	30%	30%
	very fine sand	0.125	0	0%	30%
	fine sand	0.250	0	0%	30%
Sand	mediumsand	0.50	2	2%	32%
	coarse sand	1.00	0	0%	32%
	ery coarse san	2.0	0	0%	32%
	very fine grave	4.0	0	0%	32%
	fine gravel	5.7	1	1%	33%
	fine gravel	8.0	1	1%	34%
	medium gravel	11.3	15	15%	49%
Gravel	medium gravel	16.0	17	17%	66%
	course gravel	22.3	15	15%	81%
	course gravel	32.0	13	13%	94%
	ery coarse grav	45	4	4%	98%
	ery coarse grav	64	1	1%	99%
	small cobble	90	1	1%	100%
с III	medium cobble	128	0	0%	100%
Cobble	large cobble	180	0	0%	100%
	ery large cobbl	256	0	0%	100%
	small boulder	362	0	0%	100%
n 11	small boulder	512	0	0%	100%
Boulder	nedium boulde	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
OTAL % o	of whole coun		100	100%	100%
Summa	ary Data				
D50	12.0				
D84	25.0				
D95	33.0				

Figure 5.19. Pebble Counts

		Frature. R	me (AB 27)	MV2_(9/2015)	
Descriptio	Motorial	Size (mm)	Total #	Item %	Cum %
II Silt/Clay	wilt/alay	0.062	10	10%	10%
Sitter	very fine sand	0.125	0	0%	10%
	fine sand	0.250	0	0%	10%
Sand	mediumsand	0.50	0	0%	10%
	coarse sand	1.00	0	0%	10%
	erv coarse san	2.0	0	0%	10%
	very fine grave	4.0	0	0%	10%
	fine gravel	5.7	0	0%	10%
	fine gravel	8.0	1	1%	11%
	medium gravel	11.3	0	0%	11%
Gravel	medium gravel	16.0	10	10%	21%
	course gravel	22.3	22	22%	43%
	course gravel	32.0	27	27%	70%
	ery coarse grav	45	20	20%	90%
	ery coarse grav	64	10	10%	100%
	small cobble	90	0	0%	100%
Cabble	medium cobble	128	0	0%	100%
Copple	large cobble	180	0	0%	100%
	ery large cobbl	256	0	0%	100%
	small boulder	362	0	0%	100%
Bouldor	small boulder	512	0	0%	100%
Domaci	nedium boulde	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
TAL % o	of whole cour	-	100	100%	100%
Summa	ary Data				
D50	25.0				
D84	40.0				

Figure 5.20. Pebble Counts

	Da	Project Name	: Heath Dairy		
	Ke	Footure: Ri	ffle (XS 28)	еек	
		Teature. K	IIIe (AS 20)	MY2-(9/2015)	
Descriptio	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	19	19%	19%
~y	very fine sand	0.125	0	0%	19%
	fine sand	0.250	0	0%	19%
Sand	medium sand	0.50	1	1%	20%
	coarse sand	1.00	0	0%	20%
	erv coarse sand	2.0	0	0%	20%
	very fine grave	4.0	0	0%	20%
	fine gravel	57	1	1%	21%
	fine gravel	80	2	2%	23%
	medium gravel	11.3	14	14%	37%
Gravel	medium gravel	16.0	19	19%	56%
Siuvel	course gravel	22.3	19	19%	75%
	course gravel	32.0	13	13%	88%
	eouise giaver	45	10	10%	98%
	ry coarse grav	64	0	0%	98%
	small cobble	90	2	2%	100%
	medium cobble	128	0	0%	100%
Cobble	large cobble	120	0	0%	100%
	ery large cobbl	256	0	0%	100%
	small boulder	362	0	0%	100%
	small boulder	512	0	0%	100%
Boulder	medium boulder	1024	0	0%	100%
	larga boulder	2048	0	0%	100%
Redrock	hadrock	40096	0	0%	100%
OTAL % c	f whole cour	-	100	100%	100%
UTAL /01	i more cour	-	100	10070	10070
Summa	ary Data				
D50	15.0				
D84	30.0				
D95	41.0				

Table 10.1 Baseline Stream Data Summary

	Existing Conditions	Reference Reach		Design		Existing Conditions	Reference Reach	Design	Reference Reach	De	sign
	Back Creek		Back Cr.	Back Cr.	Back Cr.	Back Creek	UT to	Back Creek	Fork	Back Cr.	Back Cr.
Stream Reach	Upper	Fork Creek	Reach 1*	Reach 2*	Reach 3*	Lower	Polecat Cr.	Reach 4*	Creek	Reach 4b*	Reach 5*
Stream Type	G4	B4c	B4c	B4c	B4c	E4	E4	E4	B4c	B4c	B4c
Drainage Area (mi ²)	0.94	2.2	1.04	1.08	1.22	2.5	0.4	1.3	2.2	1.34	2.69
Bankfull Width (ft)	10.1	20.1	16.5	16.6	17.5	13.8	9.4	16.5	20.1	17.5	22.5
Mean Depth (ft)	1.68	1.73	1.2	1.2	1.3	3.07	1.13	1.4	1.73	1.2	1.6
Bankfull XS _{AREA} (ft ²)	17	34.8	19	19	22	42.3	10.6	23	34.8	22	36
Bankfull Discharge (cfs)	75	163	86	88	101	167	37.4	101	163	101	174
Bkf Mean Velocity (ft/s)	4.4	4.7	4.5	4.5	4.5	3.9	3.5	3	4.7	3	4.5
Width/Depth Ratio	6	12	14	14	14	4.5	8.3	12	12	14	14
Max. Riffle Depth (ft)	2.4	2	1.6	1.6	1.7	4.1	1.6	2	2	1.7	2.2
Riffle Depth Ratio	1.4	1.2	1.3	1.3	1.3	1.3	1.4	1.45	1.2	1.4	1.4
Max. Pool Depth (ft)	2.8	2.6	2.4	2.5	2.6	5	1.6	3.5	2.6	2.6	3.3
Pool Depth Ratio	1.7	1.5	2	2	2	1.6	1.8	2.2	1.5	2.1	2.1
Flood Prone Width (ft)	29	63	30 - 45	28 - 77	34 - 120	200	50	200	63	35	45
Entrenchment Ratio	1.4 - 4.5	2.7 - 3.1	1.9 – 2.9	1.7 - 4.8	2.0 - 7.0	14.5	5.3	12.5	2.7 - 3.1	2	2
Bank Height Ratio	1.4 - 2.3	1.2	1	1	1	1.5	1.2	1	1.2	1	1
Meander Length (ft)	190	37 – 172	110 - 120	125 - 145	130 - 145	160	56 - 85	135 - 155	37 – 172	115	145
Meander Length Ratio	19	1.8 - 8.6	7.1 – 7.7	7.8 – 9.1	7.6 - 8.5	12	6 – 9	8.4 - 9.7	1.8 - 8.6	6.6	6.6
Radius of Curvature (ft)	18	47 - 318	31 - 46	32 - 48	34 - 51	15	19 - 50	32 - 48	47 - 318	35 - 52	44 - 66
Rc Ratio	1.8	2.3 - 16	2 – 3	2 - 3	2 – 3	1.1	2.0 - 5.3	2-3	2.3 - 16	2 – 3	2 – 3
Belt Width (ft)	25	33 - 40	30 - 35	40 - 50	45 - 60	23	28 - 50	90	33 - 40	40	60
Meander Width Ratio	2.5	1.6 - 2.0	1.9 – 2.2	2.5 - 3.1	2.6 - 3.5	1.7	3.0 - 5.3	5.6	1.6 - 2.0	2.3	2.7
Sinuosity	1	1.05	1.1	1.1	1.1	1	1.4	1.3	1.05	1.1	1.1
Channel Slope (ft/ft)	0.0087	0.0079	0.006	0.0062	0.0062	0.0045	0.012	0.0023	0.0079	0.0095	0.0095
Valley Slope (ft/ft)	0.0087	0.0083	0.0066	0.0068	0.0068	0.0045	0.017	0.003	0.0083	0.0105	0.0105
Riffle Slope (ft/ft)	0.023	0.013	0.006	0.0062	0.0062	0.0037	0.027	0.0023	0.013	0.0095	0.0095
Riffle Slope Ratio	2.6	0.1	1	1	1	0.8	2.3	1	0.1	1	1
Pool Slope (ft/ft)	0	0.001	0	0	0	0	0.017	0	0.001	0	0
Pool Slope Ratio	0	0.1	0	0	0	0	1.4	0	0.1	0	0
Pool Width (ft)	7.8	19.9	18.1	18.3	19.2	13.4	7.1	18.1	19.9	19.2	24.7
Pool Width Ratio	0.8	1	1.1	1.1	1.1	1	0.8	1.1	1	1.1	1.1
Pool Spacing (ft)	57.6	71 – 134	66 - 99	66 - 99	70 - 105	43	34 - 52	66 - 99	71 – 134	70 - 105	90 - 135
Pool Spacing Ratio	5.7	3.5 - 6.7	6-Apr	4 - 6	4 - 6	3.1	3.6 - 5.5	4 - 6	3.5 - 6.7	4 - 6	4-6
D ₅₀ (mm)	25	28	25	25	25	25	15	25	28	25	25
D ₈₄ (mm)	63	81	63	63	63	81	91	81	81	81	81

*See Restoration Plan dated 2009 for reach designations

Table 10.2 Baseline Stream Data Summary

	Existing Conditions	Reference Reach	Design	Existing Condition s	Referen ce Reach	Design	Existing Conditions	Reference Reach		Design	
	North Branch	Fork Creek	North	East	Fork	East	West	Fork	West Branch	West Branch	West Branch
Stream Reach			Branch	Branch	Creek	Branch	Branch	Creek	Reach 1*	Reach 2*	Reach 3*
Stream Type	E4	B4c	B4c	G4	B4c	B4c	G4	B4c	B4c	B4c	B4c
Drainage Area (mi ²)	2.5	2.2	1.14	0.05	2.2	0.25	0.05	2.2	0.05	0.06	0.14
Bankfull Width (ft)	13.8	20.1	16.5	5	20.1	10	5	20.1	5.8	6.2	8.2
Mean Depth (ft)	3.07	1.73	1.2	0.62	1.73	0.7	0.62	1.73	0.4	0.44	0.6
Bankfull XS _{AREA} (ft ²)	42.3	34.8	20	3.1	34.8	7	3.1	34.8	2.4	2.7	4.7
Bankfull Discharge (cfs)	167	163	92	8.5	163	30	8.5	163	9	10	19
Bkf Mean Velocity (ft/s)	3.9	4.7	4.5	2.7	4.7	4.5	2.7	4.7	4.5	4.5	4.5
Width/Depth Ratio	4.5	12	13	8	12	14	8	12	14	14	14
Max. Riffle Depth (ft)	4.1	2	1.7	0.8	2	1	0.8	2	0.55	0.6	0.8
Riffle Depth Ratio	1.3	1.2	1.4	1.3	1.2	1.4	1.3	1.2	1.38	1.36	1.36
Max. Pool Depth (ft)	5	2.6	2.6	1.4	2.6	1.5	1.4	2.6	0.8	0.9	1
Pool Depth Ratio	1.6	1.5	2.1	2.3	1.5	2.1	2.3	1.5	2	2	2
Flood Prone Width (ft)	200	63	40 - 57	5.8	63	26 - 42	5.8	63	12 - 22	12 - 30	16
Entrenchment Ratio	14.5	2.7 - 3.1	2.4 - 3.4	1.2	2.7 - 3.1	2.7 - 4.4	1.2	2.7 - 3.1	2.0 - 3.8	2.0 - 4.8	2
Bank Height Ratio	1.5	1.2	1	2.6	1.2	1	2.6	1.2	1	1	1
Meander Length (ft)	55	37 – 172	150 - 160	80	37 - 172	90	60 - 120	37 - 172	50 - 55	50 - 60	60 - 70
Meander Length Ratio	4	1.8 - 8.6	9.1 – 9.7	16	1.8 - 8.6	9.5	12 - 24	1.8 - 8.6	8.6 - 9.5	8.1 - 9.7	7.3 - 8.5
Radius of Curvature (ft)	13	47 - 318	33 - 49	9 - 43	47 - 318	21 - 31	9 - 43	47 - 318	12 - 17	12 – 19	16 - 25
Rc Ratio	1	2.3 - 16	2-3	1.8 - 8.6	2.3 - 16	2-3	1.8 - 8.6	2.3 - 16	2-3	2 – 3	2-3
Belt Width (ft)	35	33 - 40	40 - 50	16	33 - 40	25	20	33 - 40	15 - 20	15 - 20	25 - 30
Meander Width Ratio	2.5	1.6 - 2.0	2.4 - 3.0	3.2	1.6 - 2.0	2.6	4	1.6 - 2.0	2.6 - 3.4	2.4 - 3.2	3.1 - 3.7
Sinuosity	1	1.05	1.1	1.05	1.05	1.1	1.07	1.05	1.1	1.2	1.1
Channel Slope (ft/ft)	0.0045	0.0079	0.0036	0.011	0.0079	0.008	0.011	0.0079	0.0128	0.0174	0.00108
Valley Slope (ft/ft)	0.0045	0.0083	0.004	0.012	0.0083	0.0088	0.019	0.0083	0.0141	0.0209	0.00119
Riffle Slope (ft/ft)	0.0037	0.013	0.0036	0.31	0.013	0.008	0.31	0.013	0.0128	0.0174	0.0108
Riffle Slope Ratio	0.8	0.1	1	28	0.1	1	28	0.1	1	1	1
Pool Slope (ft/ft)	0	0.001	0	0	0.001	0	0	0.001	0	0	0
Pool Slope Ratio	0	0.1	0	0	0.1	0	0	0.1	0	0	0
Pool Width (ft)	13.4	19.9	16.5	4.4	19.9	11	4.4	19.9	6.4	6.8	9
Pool Width Ratio	1	1	1	0.9	1	1.1	0.9	1	1.1	1.1	1.1
Pool Spacing (ft)	43	71 – 134	66 - 99	9 - 45	71 - 134	40 - 60	9 - 45	71 – 134	23 - 35	25 - 37	32 - 49
Pool Spacing Ratio	3.1	3.5 - 6.7	4 - 6	2-9	3.5 - 6.7	4 - 6	2-9	3.5 - 6.7	4-6	4 - 6	4-6
D ₅₀ (mm)	25	28	25	9	28	25	9	28	9	9	9
D ₈₄ (mm)	81	81	81	19	81	81	19	81	19	19	19

*See Restoration Plan dated 2009 for reach designations

Table 11.1. Monitoring – Cross Section Morphology

					М	orph	ology	/ and	Hyd	raulio	с Мо	nitori	ng S	umm	ary (I	Dime	nsior	nal Pa	aram	eters	- Ci	ross	Secti	ons)											
						Heat	in Da	ry Ro		otrea	m ke	stora	ition/	DIVIS	#170	0 50	egme	ent/Ke	each	: Bac	KCr	еек х	51 -	10					1				- /-		
		C	ross t	Section	11 (Po	ol)			CI	oss S	ection	2 (Ritt	le)			Cr	oss Se	ection	3 (Ritt	le)			C	ross S	ection	4 (Poo	D)				Cross	Sectio	n 5 (Pc	ol)	
Based on fixed baseline bankfull elevation	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Bankfull Width (ft)	21.75	14.31	19.57					16.91	13.78	15.87					15.25	13.57	15.79					14.97	20.17	18.56					18.29	16.17	17.33				L
Floodprone Width (ft)	32	32	32					26	25.3	25.3					100	100	100					100	100	100					50	50	50				L
Bankfull Mean Depth (ft)	1.47	1.13	0.96					1.01	0.76	0.75					1.61	1.58	1.21					1.69	1.87	1.7					1.6	2.16	2.06				L
Bankfull Max Depth (ft)	2.37	1.49	1.048					1.44	1.01	1.029					2.39	2.75	2.874					2.73	2.93	2.909					2.83	3.26	3.305				L
Bankfull Cross Sectional Area (ft ²)	32.01	16.14	20.38					17	10.42	21.16					24.56	21.38	13.05					25.29	37.74	10.92					29.28	34.85	8.413				i
Bankfull Width/Depth Ratio	14.8	12.66	13.8					16.74	18.13	10.7					9.47	8.59	30.1					8.86	10.79	30					11.43	7.49	29.6				L
Bankfull Entrenchment Ratio	2.23	2.28	1.635					2.39	1.84	1.594					6.55	7.3	6.332					6.68	4.96	5.388					2.73	8.2	2.885				L
Bankfull Bank Height Ratio			1.002							1.001							1							1							1.001				L
Based on current/developing bankfull feature																																			
Bankfull Width (ft)																																			1
Floodprone Width (ft)																																			1
Bankfull Mean Depth (ft)																																			1
Bankfull Max Depth (ft)																																			1
Bankfull Cross Sectional Area (ft ²)																																			1
Bankfull Width/Depth Ratio																																			1
Bankfull Entrenchment Ratio																																			1
Bankfull Bank Height Ratio																																			í
Cross Sectional Area between end pins (ft ²)																																			í
d50 (mm)		0.05	16						30.8	16						34.5	22						0.06	0.06						NA	NA				1
		C	ross S	ection	6 (Riff	ile)			С	ross S	ection	7 (Po	ol)			Cr	oss Se	ection	8 (Riff	le)			С	ross S	ection	9 (Poo	ol)			C	ross S	ection	10 (Ri	fle)	
Based on fixed baseline bankfull elevation	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Bankfull Width (ft)	14.27	14.79	16.04					18.83	19.51	15.35					26.3	21.33	23.26					20.68	22.5	21.64					22.9	15.71	24.41				í
Floodprone Width (ft)	75	75	75					100	100	100					100	100	100					100	100	100					100	100	100				1
Bankfull Mean Depth (ft)	0.87	1.01	0.91					1.59	1.9	1.8					0.97	1.23	1.1					1.81	2.32	1.33					1.1	1.06	0.92				í
Bankfull Max Depth (ft)	1.32	1.66	1.406					3.07	3.01	3.117					2.19	1.74	1.903					2.83	3.69	3.745					1.8	1.42	1.813				Í
Bankfull Cross Sectional Area (ft ²)	12.41	14.89	17.63					29.94	37.15	8.526					25.6	26.21	21.15					37.43	52.17	16.27					25.14	16.58	26.54				1
Bankfull Width/Depth Ratio	16.4	14.64	13.3					11.84	10.27	34.1					27.3	17.34	28.1					11.43	9.7	52					20.82	14.82	21.9				í
Bankfull Entrenchment Ratio	5.25	5	4.675					5.31	5.1	6.516					3.80	4.68	4.299					4.84	4.4	4.621					4.36	6.4	4.096				1
Bankfull Bank Height Ratio			1.001							1							1							0.999							1				1
Based on current/developing bankfull feature																																			
Bankfull Width (ft)																																			1
Floodprone Width (ft)																																			1
Bankfull Mean Depth (ft)																																			i
Bankfull Max Depth (ft)																																			i
Bankfull Cross Sectional Area (ft ²)																																			
Bankfull Width/Depth Ratio																																			i
Bankfull Entrenchment Ratio																																			
Bankfull Bank Height Ratio																																			1
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)		0.05	0.1						NA	NA						0.05	5						0.06	0.6						0.05	9				1

Table 11.2. Monitoring – Cross Section Morphology

					Μ	lorph	ology	/ and	Hyd	Irauli	c Mo	nitor	ing S	umn	nary (Dime	nsio	nal P	aram	eters	s – C	ross	Sect	ions)											
			Н	eath	Dairy	y Roa	d Str	eam	Rest	oratio	on/D	MS#	170	Seg	men	t/Rea	ch: E	Back (Cree	k XS′	11-16	; We	st Br	anch	XS1	7-20									
		C	ross S	ection	11 (Po	ool)			Cr	oss Se	ection	12 (Rif	fle)			Cr	oss S	ection	13 (Po	ol)			Cr	oss Se	ction '	14 (Rif	fle)			C	Cross S	Sectio	n 15 (P	ool)	
Based on fixed baseline bankfull elevation	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Bankfull Width (ft)	22.55	5 16.96	19.04					18.44	17.94	17.5					20.02	16.42	11					17.3	15.48	18.42					16.12	13.76	18.64				
Floodprone Width (ft)	100	100	100					100	100	100					100	100	100					70	70	70					100	100	100				
Bankfull Mean Depth (ft)	1.51	1.69	1.64					1.28	1.26	1.14					1.43	1.93	1.74					1.54	1.19	1.01					1.81	1.99	1.84				
Bankfull Max Depth (ft)	2.91	2.94	2.848					1.78	1.73	1.53					2.69	2.81	2.31					2.39	1.92	2.059					3.96	3.38	3.124				
Bankfull Cross Sectional Area (ft ²)	34.05	28.68	11.61					23.57	22.69	15.35					28.58	31.75	6.322					26.6	18.37	18.24					29.14	27.4	10.13				
Bankfull Width/Depth Ratio	14.93	10.04	28.8					14.41	14.24	20.4					14	8.51	21.1					11.23	13.01	22.3					8.91	6.91	30				
Bankfull Entrenchment Ratio	4.43	5.9	5.253					5.42	5.6	5.714					4.99	6	9.091					4.00	4.5	3.8					6.20	7.3	5.366				
Bankfull Bank Height Ratio			0.999							1							0.999							1							1.001				
Based on current/developing bankfull feature																																			
Bankfull Width (ft)																																			
Floodprone Width (ft)																																			
Bankfull Mean Depth (ft)																																			
Bankfull Max Depth (ft)																																			
Bankfull Cross Sectional Area (ft ²)																																			
Bankfull Width/Depth Ratio																																			
Bankfull Entrenchment Ratio																																			
Bankfull Bank Height Ratio																																			
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)		NA	NA						0.06	11						NA	NA						0.06	8						NA	NA				
		C	ross S	ection	16 (Pc	ool)			Cr	oss Se	ection	17 (Rif	fle)			Cr	oss S	ection	18 (Po	ol)			Cr	oss Se	ction	19 (Rif	fle)			C	ross S	Section	1 20 (Ri	iffle)	
Based on fixed baseline bankfull elevation	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Bankfull Width (ft)	18.22	2 16.95	21.29					6.65	4.96	4.9					6.86	5.82	6.3					6.7	6.23	8.719					8.79	7.74	12.01				1
Floodprone Width (ft)	57	57	60					20	20	20					26	26	30						27.7	30						29	30		· · · ·		
Bankfull Mean Depth (ft)	2.34	2.53	2.45					0.62	0.97	1.11					0.58	0.6	0.54					0.59	0.47	0.27					0.78	0.58	0.44				1
Bankfull Max Depth (ft)	3.12	3.22	3.204		1			0.99	1.22	1.38		1		1	0.92	1.03	1.09					0.83	0.62	0.598			1		1.01	0.75	0.662				
Bankfull Cross Sectional Area (ft ²)	42.73	42.85	8.69		1			4.11	4.82	4.414		1		1	3.97	3.51	11.67					3.98	2.91	32.29			1		6.83	4.53	27.29				
Bankfull Width/Depth Ratio	7.79	6.7	45					10.73	5.1	5.46					11.83	9.7	5.42					11.36	13.26	4.15					11.27	13.34	4.37		· · · ·		
Bankfull Entrenchment Ratio	3.13	3.4	2.818					3.69	4.22	4.082					3.78	4.43	4,762					6.00	4.45	3.441					4.53	3.71	2,499		· · · ·		
Bankfull Bank Height Ratio			1.001							1							1							1.001							1				1
Based on current/developing bankfull feature																																			
Bankfull Width (ft)																																			
Eloodprone Width (ft)			1		1							1		1													1								
Bankfull Mean Depth (ft)																																	<u> </u>		
Bankfull Max Depth (ft)			1									1		1													1							<u> </u>	+
Bankfull Cross Sectional Area (ft ²)			1		1							1		1													1							<u> </u>	1
Bankfull Width/Depth Ratio			1		1							1		1													1								1
Bankfull Entrenchment Ratio			t –	1	1	1					1	t –	1	t –													t –	1						<u> </u>	1
Bankfull Bank Height Ratio			1									1		1													1							<u> </u>	
Cross Sectional Area between end pins (ff ²)			1									1		1													1							<u> </u>	
d50 (mm)		0.03	3		1				NA	NA		1		1	1	NA	NA					1	113	80			1		1	45	30			 	

Table 11.3. Monitoring – Cross Section Morphology

					М	orph	ology	y and	Hyd	raulio	c Mo	nitori	ng S	umm	ary (Dime	ensior	nal P	aram	eters	5 – Cı	ross	Secti	ons)											
Heath Dairy	Roac	Stre	eam R	Resto	oratio	n/DN	IS # 1	70	Segn	nent/	Reac	h: W	est E	Iranc	h XS	21, U	IT to V	Nest	Bran	ch X	S22-:	25; N	orth	Bran	ch X	S23-2	5; Ea	ast B	rancl	<u>1 XS</u>	26-28	Contin	n 25 (Bi	ifflo)	
			1055 30	l	21 (FC	,00	1			055 36		22 (KII	ne)	r			1055 36	SCHOIL	23 (FU		1			055 36		24 (KIII	ie)	r			1055 3	Becho	11 23 (K		
Based on fixed baseline bankfull elevation	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Bankfull Width (ft)	7.72	10.54	6.754					8.59	8.52	7.146					19.17	15.83	17.18					18.46	18.94	22.41					18.86	17.76	20.68				
Floodprone Width (ft)	40	40	40					75	75	75					200	200	200					200	200	200					100	100	100				
Bankfull Mean Depth (ft)	0.83	0.93	0.97					0.52	0.51	0.46					2.68	2.67	2.88					1.32	1.39	1.33					1.36	1.38	1.35				
Bankfull Max Depth (ft)	1.31	2.13	1.561					0.84	0.67	0.834					4.72	4.83	4.567					1.93	2.21	1.978					1.82	1.85	1.741				
Bankfull Cross Sectional Area (ft ²)	6.44	9.83	6.963					4.46	4.37	15.54					51.38	42.32	5.964					24.43	26.37	16.85					25.68	24.46	15.32				
Bankfull Width/Depth Ratio	9.3	11.33	7.61					16.52	16.71	8.45					7.15	5.93	42.1					13.98	13.63	29.4					13.87	12.87	26				
Bankfull Entrenchment Ratio	5.17	3.74	5.922					8.50	8.52	10.49					10.43	12.63	11.64					10.83	10.56	8.924					5.30	5.63	4.836				
Bankfull Bank Height Ratio			1.001							1							0.998							1.001							0.999				
Based on current/developing bankfull feature																																			
Bankfull Width (ft)																																			
Floodprone Width (ft)																																			
Bankfull Mean Depth (ft)																																			
Bankfull Max Depth (ft)																																			
Bankfull Cross Sectional Area (ft ²)																																			
Bankfull Width/Depth Ratio																																			
Bankfull Entrenchment Ratio																																			
Bankfull Bank Height Ratio																																			
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)		0.04	0.1						108	180						NA	NA						0.05	14						0.05	18				
		С	ross Se	ection	26 (Pc	ool)			Cr	oss Se	ction	27 (Rif	fle)			C	ross Se	ction	28 (Rif	fle)															
Based on fixed baseline bankfull elevation	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+														
Bankfull Width (ft)	8.75	8.78	11.8					10.23	8.64	10.94					9.84	9.88	12.68																		
Floodprone Width (ft)	50	50	50					50	50	50					50	50	50																		
Bankfull Mean Depth (ft)	0.93	0.82	0.68					0.62	0.54	0.3					0.69	0.68	0.35																		
Bankfull Max Depth (ft)	1.73	1.34	1.314					1.04	0.83	0.678					1.11	1.09	1.015																		
Bankfull Cross Sectional Area (ft ²)	8.1	7.24	17.36					6.31	4.7	36.48					6.83	6.74	36.24																		
Bankfull Width/Depth Ratio	9.41	10.71	6.32					16.5	16	6.15					14.26	14.53	7.38																		
Bankfull Entrenchment Ratio	5.71	5.69	4.236					4.88	5.78	4.57					5.08	5.06	3.94																		
Bankfull Bank Height Ratio			1.001							1							1																		
Based on current/developing bankfull feature																																			
Bankfull Width (ft)							_																												
Floodprone Width (ft)							_																												
Bankfull Mean Depth (ft)		L	-	<u> </u>										<u> </u>							<u> </u>	4													
Bankfull Max Depth (ft)																					L	-													
Bankfull Cross Sectional Area (ft ²)																					L	-													
Bankfull Width/Depth Ratio		<u> </u>		L		<u> </u>	-														L	4													
Bankfull Entrenchment Ratio							_															-													
Bankfull Bank Height Ratio				<u> </u>							ļ			ļ								1													
Cross Sectional Area between end pins (ft ²)								<u> </u>			ļ			ļ								1													
d50 (mm)		0.04	12					1	0.04	25				1		0.05	15																		

Table 12.1 Monitoring – As-built Stream Reach Morphology

		Strea	am F	Reac	h Da	ata S	Sum	mar	y M	<u> /0 (</u> 2	2013)
	As-b	uilt Bas	eline	As-b	uilt Bas	eline	As-b	uilt Bas	eline	As-b	uilt Bas	eline
Parameter	Ba	ick Cre	ek	We	st Brar	nch	Ea	st Bran	ch	No	th Bra	nch
Dimension and Substrate - Riffle	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Bankfull Width (ft)	16.83	22.50	13.57	7.21	10.54	4.96	15.83	18.94	17.51	8.64	9.88	9.1
Floodprone Width (ft)	81.83	100.00	25.30	37.74	75.00	20.00	100.00	200.00	166.67	50	50	50.00
Bankfull Mean Depth (ft)	1.60	2.53	0.76	0.70	0.97	0.47	1.38	2.67	1.81	0.54	0.82	0.68
¹ Bankfull Max Depth (ft)	2.44	3.69	1.01	1.13	2.13	0.62	1.85	4.83	2.96	0.83	1.34	1.09
Bankfull Cross Sectional Area (ft ²)	27.45	52.17	10.42	5.09	9.83	2.91	24.46	42.32	31.05	4.7	7.24	6.23
Width/Depth Ratio	11.49	18.13	6.70	11.22	16.71	5.10	5.93	13.63	10.81	10.71	16	13.75
Entrenchment Ratio	5.18	8.20	1.84	5.07	8.52	3.74	5.63	12.63	9.61	5.06	5.78	5.51
Bank Height Ratio												
Profile												
Riffle Length (ft)	5.6	41.35	20.69	8.18	37.21	19.88	11.7	29.52	18.41	14.96	36.16	26.28
Riffle Slope (ft/ft)	0.006	0.054	0.018	0.004	0.07	0.031	0.008	0.034	0.02	0.004	0.043	0.015
Pool Length (ft)	27.56	87.25	52.19	9.94	28.1	17.28	8.34	35.61	18.91	44.48	66.09	56.48
Pool Max depth (ft)	1.64	4.44	3.36	1.07	3.1	2.1	0.14	2.89	2.1	3.46	5.76	4.67
Pool Spacing (ft)	36.25	96.07	63.7	15.16	59.89	33.5	18.82	48.83	32.26	65.69	96.16	83.13
Pattern												
Channel Beltwidth (ft)	20.92	71.71	47.45	10.31	20.44	15.85	15.2	33.72	21.23	16.97	44.48	33.65
Radius of Curvature (ft)	27.45	46.2	38.7	27.45	33.95	29.61	6.55	19.17	15.14	21.07	36.63	29.39
Rc/Bankfull width (ft/ft)	1.63	2.05	2.85	3.81	3.22	5.97	0.41	1.01	0.86	2.44	3.71	3.23
Meander Wavelength (ft)	131	157	146.3	47	65.5	55.1	87	131	110	157	170	163
Meander Width Ratio			3.50			3.20			1.21			3.70
Transport parameters												
Reach Shear Stress (competency) lb/f ²												
Max part size (mm) mobilized at bankfull												
Stream Power (transport capacity) W/m ²												
Additional Reach Parameters												
Rosgen Classification		B4c/E4			B4c			B4c			B4c	
Bankfull Velocity (fps)												
Bankfull Discharge (cfs)												
Valley length (ft)		4400			927			612			1082	
Channel Thalweg length (ft)		5296			1616			647			1168	
Sinuosity (ft)		1.2			1.7			1.1			1.1	
Water Surface Slope (Channel) (ft/ft)		0.0056			0.018			0.009			0.0061	
BF slope (ft/ft)		0.005			0.019			0.014			0.0054	
Bankfull Floodplain Area (acres)												
Proportion over wide (%)												
Channel Stability or Habitat Metric												
Biological or Other												

	ę	Strea	am F	Read	h Da	ata S	Sum	mar	y M`	Y1 (2	2014)
		MY 1			MY 1			MY 1			MY 1	
Parameter	Ba	ick Cre	ek	We	st Brar	ich	Ea	st Bran	ch	No	rth Brai	nch
Dimension and Substrate - Riffle	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Bankfull Width (ft)	16.83	22.50	13.57	7.21	10.54	4.96	15.83	18.94	17.51	8.64	9.88	9.1
Floodprone Width (ft)	81.83	100.00	25.30	37.74	75.00	20.00	100.00	200.00	166.67	50	50	50.00
Bankfull Mean Depth (ft)	1.60	2.53	0.76	0.70	0.97	0.47	1.38	2.67	1.81	0.54	0.82	0.68
¹ Bankfull Max Depth (ft)	2.44	3.69	1.01	1.13	2.13	0.62	1.85	4.83	2.96	0.83	1.34	1.09
Bankfull Cross Sectional Area (ft ²)	27.45	52.17	10.42	5.09	9.83	2.91	24.46	42.32	31.05	4.7	7.24	6.23
Width/Depth Ratio	11.49	18.13	6.70	11.22	16.71	5.10	5.93	13.63	10.81	10.71	16	13.75
Entrenchment Ratio	5.18	8.20	1.84	5.07	8.52	3.74	5.63	12.63	9.61	5.06	5.78	5.51
Bank Height Ratio												
Profile												
Riffle Length (ft)	5.6	41.35	20.69	8.18	37.21	19.88	11.7	29.52	18.41	14.96	36.16	26.28
Riffle Slope (ft/ft)	0.006	0.054	0.018	0.004	0.07	0.031	0.008	0.034	0.02	0.004	0.043	0.015
Pool Length (ft)	27.56	87.25	52.19	9.94	28.1	17.28	8.34	35.61	18.91	44.48	66.09	56.48
Pool Max depth (ft)	1.64	4.44	3.36	1.07	3.1	2.1	0.14	2.89	2.1	3.46	5.76	4.67
Pool Spacing (ft)	36.25	96.07	63.7	15.16	59.89	33.5	18.82	48.83	32.26	65.69	96.16	83.13
Pattern												
Channel Beltwidth (ft)	20.92	71.71	47.45	10.31	20.44	15.85	15.2	33.72	21.23	16.97	44.48	33.65
Radius of Curvature (ft)	27.45	46.2	38.7	27.45	33.95	29.61	6.55	19.17	15.14	21.07	36.63	29.39
Rc/Bankfull width (ft/ft)	1.63	2.05	2.85	3.81	3.22	5.97	0.41	1.01	0.86	2.44	3.71	3.23
Meander Wavelength (ft)	131	157	146.3	47	65.5	55.1	87	131	110	157	170	163
Meander Width Ratio			3.50			3.20			1.21			3.70
Transport parameters												
Reach Shear Stress (competency) lb/f ²												
Max part size (mm) mobilized at bankfull												
Stream Power (transport capacity) W/m ²												
Additional Reach Parameters												
Rosgen Classification		B4c/E4			B4c			B4c			B4c	
Bankfull Velocity (fps)												
Bankfull Discharge (cfs)												
Valley length (ft)		4400			927			612			1082	
Channel Thalweg length (ft)		5296			1616			647			1168	
Sinuosity (ft)		1.2			1.7			1.1			1.1	
Water Surface Slope (Channel) (ft/ft)		0.0056			0.018			0.009			0.0061	
BF slope (ft/ft)		0.005			0.019			0.014			0.0054	
Bankfull Floodplain Area (acres)												
Proportion over wide (%)												
Channel Stability or Habitat Metric												
Biological or Other												

Table 12.2 Monitoring – MY1 (2014) Stream Reach Morphology

Table 12.3 Monitoring – MY2 (2015) Stream Reach Morphology

	ę	Strea	am F	Read	h Da	ata S	Sum	mar	y Mì	(2 (2	2015)
		MY 1			MY 1			MY 1			MY 1	
Parameter	Ba	ick Cre	ek	We	st Brar	nch	Ea	st Bran	ch	No	th Brai	nch
Dimension and Substrate - Riffle	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Bankfull Width (ft)	18.36	24.41	11.00	7.74	12.01	4.90	17.18	22.41	20.09	10.94	12.68	11.81
Floodprone Width (ft)	82.02	100.00	25.30	30.00	40.00	20.00	100.00	200.00	166.67	50	50	50.00
Bankfull Mean Depth (ft)	1.41	2.45	0.75	0.67	1.11	0.27	1.33	2.88	1.85	0.3	0.68	0.44
¹ Bankfull Max Depth (ft)	2.39	3.75	1.03	1.06	1.56	0.60	1.74	4.57	2.76	0.678	1.314	1.00
Bankfull Cross Sectional Area (ft ²)	14.65	26.54	6.32	16.53	32.29	4.41	5.96	16.85	12.71	17.36	36.48	30.03
Width/Depth Ratio	26.95	52.00	10.70	5.40	7.61	4.15	26.00	42.10	32.50	6.15	7.38	6.62
Entrenchment Ratio	4.63	9.09	1.59	4.14	5.92	2.50	4.84	11.64	8.47	3.942	4.568	4.25
Bank Height Ratio			1.00			1.00			1.00			1.00
Profile												
Riffle Length (ft)	4.82	46.11	25.72	6.638	32.38	19.54	11.07	28.32	16.17	22.7	40	33.64
Riffle Slope (ft/ft)	3E-04	0.073	0.018	0.009	0.269	0.091	0.001	0.041	0.017	0.002	0.038	0.017
Pool Length (ft)	27.56	87.25	52.19	9.94	28.1	17.28	8.34	35.61	18.91	44.48	66.09	56.48
Pool Max depth (ft)	1.64	4.44	3.36	1.07	3.1	2.1	0.14	2.89	2.1	3.46	5.76	4.67
Pool Spacing (ft)	14.83	97.38	55.54	4.352	63.53	29.43	18.82	48.83	32.26	56.5	160.9	86.85
Pattern												
Channel Beltwidth (ft)	20.92	71.71	47.45	10.31	20.44	15.85	15.2	33.72	21.23	16.97	44.48	33.65
Radius of Curvature (ft)	27.45	46.2	38.7	27.45	33.95	29.61	6.55	19.17	15.14	21.07	36.63	29.39
Rc/Bankfull width (ft/ft)	1.63	2.05	2.85	3.81	3.22	5.97	0.41	1.01	0.86	2.44	3.71	3.23
Meander Wavelength (ft)	131	157	146.3	47	65.5	55.1	87	131	110	157	170	163
Meander Width Ratio			3.50			3.20			1.21			3.70
Transport parameters												
Reach Shear Stress (competency) Ib/I												
Additional Baseb Parameters												
Pagan Classification		P4o/E4		_	P4o			P4o			P4o	
Ronkfull Velocity (fps)		B40/E4 D40 D40						D4C			D40	
Bankfull Discharge (cfs)												
Valley length (ft)		4400			027			612			1082	
Channel Thalweg length (ft)		5206			1616			647			1168	
Sinuosity (ft)		10			47			047			1100	
Water Surface Slope (Channel) (ff/ft)		0.0056			0.018			0.009			0.0061	
BE slope (ff/ft)		0.005			0.019			0.014			0.0054	
Bankfull Floodplain Area (acres)		0.000			0.010			0.017			5.0004	
Proportion over wide (%)												
Channel Stability or Habitat Metric												
Biological or Other												

Heath Dairy_170. Monitoring Year 2 of 5. MMI _ January 2016.

Page **117** of **124**

Appendix E: Hydrologic Data

Table 13. Verification of Bankfull Events

Date of Collection	Date of occurance	Method	Photo (If Available)	Feet Above average Bankful Elevation
Sep-15	Unknown	CSG; HOBO	NA	0.4

Table 14. Wetland Gauge Attainment

	MY2 2015			
Gage #	% of Growing Season Monitored	Max # Consec. Days	% of Growing Season	Success Critera Attained?
1	35%	4	2	NA
2	85%	3	1	NA
3	85%	8	4	NA
4	100%	41	19	YES *

* Gage 4 is located within a jurisdictional wetland